AnnaR/literature_summarizer
This model is a fine-tuned version of sshleifer/distilbart-xsum-1-1 on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 3.2180
- Validation Loss: 4.7198
- Epoch: 10
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 5300, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.1}
- training_precision: float32
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
5.6694 | 5.0234 | 0 |
4.9191 | 4.8161 | 1 |
4.5770 | 4.7170 | 2 |
4.3268 | 4.6571 | 3 |
4.1073 | 4.6296 | 4 |
3.9225 | 4.6279 | 5 |
3.7564 | 4.6288 | 6 |
3.5989 | 4.6731 | 7 |
3.4611 | 4.6767 | 8 |
3.3356 | 4.6934 | 9 |
3.2180 | 4.7198 | 10 |
Framework versions
- Transformers 4.17.0
- TensorFlow 2.8.0
- Datasets 2.0.0
- Tokenizers 0.11.6
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.