#usually it's what is on the inside that counts, not this time. This script is a mess, but at least it works. #import required modules from huggingface_hub import login, get_token, whoami, repo_exists, file_exists, upload_folder, create_repo, upload_file, create_branch, update_repo_visibility import os import sys import subprocess import glob #define os differences oname = os.name if oname == 'nt': osclear = 'cls' osmv = 'move' osrmd = 'rmdir /s /q' oscp = 'copy' pyt = 'venv\\scripts\\python.exe' slsh = '\\' elif oname == 'posix': osclear = 'clear' osmv = 'mv' osrmd = 'rm -rf' oscp = 'cp' pyt = './venv/bin/python' slsh = '/' else: sys.exit('This script is not compatible with your machine.') def clear_screen(): os.system(osclear) #get token if os.environ.get('HF_TOKEN', None) is not None: try: login(get_token()) except ValueError: print("You have an invalid token set in your environment variable HF_TOKEN. This will cause issues with this script\nRemove the variable or set it to a valid WRITE token.") sys.exit("Exiting...") if os.environ.get('KAGGLE_KERNEL_RUN_TYPE', None) is not None: #check if user in kaggle from kaggle_secrets import UserSecretsClient # type: ignore from kaggle_web_client import BackendError # type: ignore try: login(UserSecretsClient().get_secret("HF_TOKEN")) #login if token secret found except BackendError: print(''' When using Kaggle, make sure to use the secret key HF_TOKEN with a 'WRITE' token. This will prevent the need to login every time you run the script. Set your secrets with the secrets add-on on the top of the screen. ''') if get_token() is not None: tfound = 'true' #if the token is found in either HF_TOKEN or cli login then log in: try: login(get_token()) except ValueError: login(input("API token is no longer valid. Enter your new HuggingFace (WRITE) token: ")) tfound = 'false' else: #if the token is not found then prompt user to provide it: login(input("API token not detected. Enter your HuggingFace (WRITE) token: ")) tfound = "false" #if the token is read only then prompt user to provide a write token: while True: if whoami().get('auth', {}).get('accessToken', {}).get('role', None) != 'write': clear_screen() if os.environ.get('HF_TOKEN', None) is not None: #if environ finds HF_TOKEN as read-only then display following text and exit: print(''' You have the environment variable HF_TOKEN set to a 'READ' token. You cannot log in. Either set the environment variable to a 'WRITE' token or remove it. ''') input("Press enter to continue.") sys.exit("Exiting...") if os.environ.get('COLAB_BACKEND_VERSION', None) is not None: print(''' Your Colab secret key is read-only Please switch your key to 'write' or disable notebook access on the left. ''') sys.exit("Stuck in loop, exiting...") elif os.environ.get('KAGGLE_KERNEL_RUN_TYPE', None) is not None: print(''' Your Kaggle secret key is read-only Please switch your key to 'write' or unattach from notebook in add-ons at the top. Having a read-only key attched will require login every time. ''') print("You do not have write access to this repository. Please use a valid token with (WRITE) access.") login(input("Enter your HuggingFace (WRITE) token: ")) continue break clear_screen() #get original model repo url repo_url = input("Enter unquantized model repository (User/Repo): ") #look for repo if repo_exists(repo_url) == False: print(f"Model repo doesn't exist at https://huggingface.co/{repo_url}") sys.exit("Exiting...") model = repo_url.replace("/", "_") modelname = repo_url.split("/")[1] clear_screen() #ask for number of quants qmount = int(input("Enter the number of quants you want to create: ")) qmount += 1 clear_screen() #save bpw values print(f"Type the BPW for the following {qmount - 1} quants. Recommend staying over 2.4 BPW. Use the vram calculator to find the best BPW values: https://huggingface.co/spaces/NyxKrage/LLM-Model-VRAM-Calculator") qnum = {} for i in range(1, qmount): qnum[f"bpw{i}"] = float(input(f"Enter BPW for quant {i} (2.00-8.00): ")) #convert input to float for proper sorting clear_screen() #collect all values in a list for sorting bpwvalue = list(qnum.values()) #sort the list from smallest to largest bpwvalue.sort() #ask to change repo visibility to public on hf hub priv2pub = input("Do you want to make the repo public after successful quants? (y/n): ").lower() while priv2pub != 'y' and priv2pub != 'n': priv2pub = input("Please enter 'y' or 'n': ").lower() clear_screen() #ask to delete original fp16 weights delmodel = input("Do you want to delete the original model? (Won't delete if paused or failed) (y/N): ").lower() if delmodel == '': delmodel = 'n' while delmodel != 'y' and delmodel != 'n': delmodel = input("Please enter 'y' or 'n': ").lower() if delmodel == '': delmodel = 'n' clear_screen() #downloading the model if not os.path.exists(f"models{slsh}{model}{slsh}converted-st"): #check if model was converted to safetensors, skip download if it was result = subprocess.run(f"{pyt} download-model.py {repo_url}", shell=True) #download model from hf (Credit to oobabooga for this script) if result.returncode != 0: print("Download failed.") sys.exit("Exiting...") clear_screen() #convert to safetensors if bin if not glob.glob(f"models/{model}/*.safetensors"): #check if safetensors model exists convertst = input("Couldn't find safetensors model, do you want to convert to safetensors? (y/n): ").lower() while convertst != 'y' and convertst != 'n': convertst = input("Please enter 'y' or 'n': ").lower() convusebf16 = input("Would you like to use bf16 loading? Will reduce ram usage (y/n): ").lower() while convusebf16 != 'y' and convusebf16 != 'n': convusebf16 = input("Please enter 'y' or 'n': ").lower() if convusebf16 == 'y': usingbf16 = "--bf16" else: usingbf16 = "" if convertst == 'y': print("Converting weights to safetensors, please wait...") result = subprocess.run(f"{pyt} convert-to-safetensors.py models{slsh}{model} --output models{slsh}{model}-st {usingbf16}", shell=True) #convert to safetensors (Credit to oobabooga for this script as well) if result.returncode != 0: print("Converting failed. Please look for a safetensors model or convert model manually.") sys.exit("Exiting...") subprocess.run(f"{osrmd} models{slsh}{model}", shell=True) #remove previous weights subprocess.run(f"{osmv} models{slsh}{model}-st models{slsh}{model}", shell=True) #replace with safetensors open(f"models{slsh}{model}{slsh}converted-st", 'w').close() print("Finished converting") else: sys.exit("Can't quantize a non-safetensors model. Exiting...") clear_screen() #create new repo if one doesn't already exist if repo_exists(f"{whoami().get('name', None)}/{modelname}-exl2") == False: print("Creating model repository...") create_repo(f"{whoami().get('name', None)}/{modelname}-exl2", private=True) print(f"Created repo at https://huggingface.co/{whoami().get('name', None)}/{modelname}-exl2") #notify user of repo creation #create the markdown file print("Writing model card...") with open('./README.md', 'w') as file: file.write(f"# Exl2 quants for [{modelname}](https://huggingface.co/{repo_url})\n\n") file.write("## Automatically quantized using the auto quant script from [hf-scripts](https://huggingface.co/anthonyg5005/hf-scripts)\n\n") file.write("### BPW:\n\n") for bpw in bpwvalue: file.write(f"[{bpw}](https://huggingface.co/{whoami().get('name', None)}/{modelname}-exl2/tree/{bpw}bpw)\\\n") file.write(f"[measurement.json](https://huggingface.co/{whoami().get('name', None)}/{modelname}-exl2/blob/main/measurement.json)\n") print("Created README.md") upload_file(path_or_fileobj="README.md", path_in_repo="README.md", repo_id=f"{whoami().get('name', None)}/{modelname}-exl2", commit_message="Add temp README") #upload md file print("Uploaded README.md to main") else: input("repo already exists, are you resuming a previous process? (Press enter to continue, ctrl+c to exit)") #start converting for bpw in bpwvalue: if os.path.exists(f"measurements{slsh}{model}-measure{slsh}measurement.json"): # Check if measurement.json exists cmdir = False mskip = f" -m measurements{slsh}{model}-measure{slsh}measurement.json" #skip measurement if it exists else: cmdir = True mskip = "" print(f"Starting quantization for BPW {bpw}") os.makedirs(f"{model}-exl2-{bpw}bpw-WD", exist_ok=True) #create working directory os.makedirs(f"{model}-exl2-{bpw}bpw", exist_ok=True) #create compile full directory subprocess.run(f"{oscp} models{slsh}{model}{slsh}config.json {model}-exl2-{bpw}bpw-WD", shell=True) #copy config to working directory #more settings exist in the convert.py script, to veiw them go to docs/convert.md or https://github.com/turboderp/exllamav2/blob/master/doc/convert.md result = subprocess.run(f"{pyt} exllamav2/convert.py -i models/{model} -o {model}-exl2-{bpw}bpw-WD -cf {model}-exl2-{bpw}bpw -b {bpw}{mskip} -hb 8 -fst", shell=True) #run quantization and exit if failed (Credit to turbo for his dedication to exl2) if result.returncode != 0: print("Quantization failed.") sys.exit("Exiting...") if cmdir == True: os.makedirs(f"measurements{slsh}{model}-measure", exist_ok=True) #create measurement directory subprocess.run(f"{oscp} {model}-exl2-{bpw}bpw-WD{slsh}measurement.json measurements{slsh}{model}-measure", shell=True) #copy measurement to measure directory open(f"measurements{slsh}{model}-measure/Delete folder when no more quants are needed from this model", 'w').close() try: create_branch(f"{whoami().get('name', None)}/{modelname}-exl2", branch=f"{bpw}bpw") #create branch except: print(f"Branch {bpw} already exists, trying upload...") try: os.remove(f"{model}-exl2-{bpw}bpw/README.md") #bypasses encode issue when uploading some models print("Deleting model README.") except: print("Skipping README delete.") upload_folder(folder_path=f"{model}-exl2-{bpw}bpw", repo_id=f"{whoami().get('name', None)}/{modelname}-exl2", commit_message=f"Add quant for BPW {bpw}", revision=f"{bpw}bpw") #upload quantized model subprocess.run(f"{osrmd} {model}-exl2-{bpw}bpw-WD", shell=True) #remove working directory subprocess.run(f"{osrmd} {model}-exl2-{bpw}bpw", shell=True) #remove compile directory if file_exists(f"{whoami().get('name', None)}/{modelname}-exl2", "measurement.json") == False: #check if measurement.json exists in main upload_file(path_or_fileobj=f"measurements{slsh}{model}-measure{slsh}measurement.json", path_in_repo="measurement.json", repo_id=f"{whoami().get('name', None)}/{modelname}-exl2", commit_message="Add measurement.json") #upload measurement.json to main # if chose to delete model at the beginning, delete the model if delmodel == 'y': subprocess.run(f"{osrmd} models{slsh}{model}", shell=True) print(f"Deleted models/{model}") #update repo visibility if user chose to if priv2pub == 'y': update_repo_visibility(f"{whoami().get('name', None)}/{modelname}-exl2", private=False) print("Repo is now public.") #if new sign in, tell user if tfound == 'false': print(f''' You are now logged in as {whoami().get('fullname', None)}. To logout, use the hf command line interface 'huggingface-cli logout' To view your active account, use 'huggingface-cli whoami' ''') print(f'''Quants available at https://huggingface.co/{whoami().get('name', None)}/{modelname}-exl2''')