Edit model card

Requirements

pip install transformers[torch]

Inference

import json
import requests

def convert_to_json(answer):
    # Replace '<pad>' and '</s>' as per the provided logic
    answer = answer.replace("<pad>", "").replace("</s>", "")
    answer = answer.strip("'")  # Remove leading and trailing single quotes
    
    # Replace 'false' with 'False' and 'true' with 'True' for Python compatibility
    answer = answer.replace("false", "False").replace("true", "True")
    
    # Convert the string to a dictionary
    answer_dict = eval(answer)
    
    # Convert the dictionary to a JSON object
    answer_json = json.dumps(answer_dict)
    
    # Load the JSON object to ensure it's correctly formatted
    json_data = json.loads(answer_json)
    
    return json_data

def valid_url(url):
    valid_list = [
        "github.com", "bitbucket.org", "sourceforge.net", "aws.amazon.com",
        "dev.azure.com", "gitea.com", "gogs.io", "phabricator.com",
        "gitkraken.com", "beanstalkapp.com", "gitlab.com"
    ]
    platform = url.split("//")[1].split("/")[0]

    if platform in valid_list:
        return True
        
    return {'message': 'Provide a valid URL for scanning. Currently, we support PII_Scanner, SAST_Scanner, Sac_Scanner (Open_Source_Security), IaC_Scanner, Container_Scanner'}
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
import time

tokenizer = AutoTokenizer.from_pretrained("AquilaX-AI/NL-JSON-77M")
model = AutoModelForSeq2SeqLM.from_pretrained("AquilaX-AI/NL-JSON-77M")

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Change YOUR_QUERY eg: can this https://github.com/mr-vicky-01/educational-assitant on every week using pii and sast scan
query = "convert my query into json: " + "YOUR_QUERY".lower()

start = time.time()

inputs = tokenizer(query, return_tensors="pt")
model.to(device)
inputs = inputs.to(device)
outputs = model.generate(**inputs, max_length=256)
answer = tokenizer.decode(outputs[0])
json_data = convert_to_json(answer)
try:
    valid = valid_url(json_data["repo"])
    if valid == True:
        print(json_data)
    else:
        print(valid)
except:
    print(json_data)

end = time.time()
print(f"Time taken: {end - start}")
Downloads last month
2
Safetensors
Model size
76.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.