File size: 1,054 Bytes
c320dd2 700f8ad c320dd2 700f8ad c320dd2 700f8ad c320dd2 9d8a74a c320dd2 700f8ad c320dd2 700f8ad c320dd2 700f8ad c320dd2 700f8ad c320dd2 700f8ad c320dd2 700f8ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
---
library_name: transformers
license: apache-2.0
---
## INFERENCE
```Python
import time
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
finetuned_model = AutoModelForCausalLM("AquilaX-AI/QnA")
tokenizer = AutoTokenizer("AquilaX-AI/QnA")
alpaca_prompt = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
what is machine learning?
### Response:
"""
s = time.time()
prompt = alpaca_prompt
encodeds = tokenizer(prompt, return_tensors="pt",truncation=True).input_ids
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
finetuned_model.to(device)
inputs = encodeds.to(device)
# Increase max_new_tokens if needed
generated_ids = finetuned_model.generate(inputs, max_new_tokens=256, temperature=0.5, top_p=0.90, do_sample=True,pad_token_id=50259,eos_token_id=50259,num_return_sequences=1)
print(tokenizer.decode(generated_ids[0]).split('### Response:')[1].split('<eos>')[0].strip())
e = time.time()
print(f'time taken:{e-s}')
``` |