update model card README.md
Browse files
README.md
CHANGED
@@ -2,6 +2,8 @@
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
|
|
|
|
5 |
metrics:
|
6 |
- precision
|
7 |
- recall
|
@@ -9,7 +11,27 @@ metrics:
|
|
9 |
- accuracy
|
10 |
model-index:
|
11 |
- name: albert-base-v2-finetuned-ner
|
12 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -17,13 +39,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
# albert-base-v2-finetuned-ner
|
19 |
|
20 |
-
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Precision: 0.
|
24 |
-
- Recall: 0.
|
25 |
-
- F1: 0.
|
26 |
-
- Accuracy: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -54,9 +76,9 @@ The following hyperparameters were used during training:
|
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
|
61 |
|
62 |
### Framework versions
|
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- conll2003
|
7 |
metrics:
|
8 |
- precision
|
9 |
- recall
|
|
|
11 |
- accuracy
|
12 |
model-index:
|
13 |
- name: albert-base-v2-finetuned-ner
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: conll2003
|
20 |
+
type: conll2003
|
21 |
+
args: conll2003
|
22 |
+
metrics:
|
23 |
+
- name: Precision
|
24 |
+
type: precision
|
25 |
+
value: 0.9301181102362205
|
26 |
+
- name: Recall
|
27 |
+
type: recall
|
28 |
+
value: 0.9376033513394334
|
29 |
+
- name: F1
|
30 |
+
type: f1
|
31 |
+
value: 0.9338457315399397
|
32 |
+
- name: Accuracy
|
33 |
+
type: accuracy
|
34 |
+
value: 0.9851613086447802
|
35 |
---
|
36 |
|
37 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
39 |
|
40 |
# albert-base-v2-finetuned-ner
|
41 |
|
42 |
+
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the conll2003 dataset.
|
43 |
It achieves the following results on the evaluation set:
|
44 |
+
- Loss: 0.0700
|
45 |
+
- Precision: 0.9301
|
46 |
+
- Recall: 0.9376
|
47 |
+
- F1: 0.9338
|
48 |
+
- Accuracy: 0.9852
|
49 |
|
50 |
## Model description
|
51 |
|
|
|
76 |
|
77 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
78 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
79 |
+
| 0.096 | 1.0 | 1756 | 0.0752 | 0.9163 | 0.9201 | 0.9182 | 0.9811 |
|
80 |
+
| 0.0481 | 2.0 | 3512 | 0.0761 | 0.9169 | 0.9293 | 0.9231 | 0.9830 |
|
81 |
+
| 0.0251 | 3.0 | 5268 | 0.0700 | 0.9301 | 0.9376 | 0.9338 | 0.9852 |
|
82 |
|
83 |
|
84 |
### Framework versions
|