ArBert commited on
Commit
b19c8c0
1 Parent(s): 7605768

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -10
README.md CHANGED
@@ -2,6 +2,8 @@
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
 
 
5
  metrics:
6
  - precision
7
  - recall
@@ -9,7 +11,27 @@ metrics:
9
  - accuracy
10
  model-index:
11
  - name: albert-base-v2-finetuned-ner
12
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ---
14
 
15
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -17,13 +39,13 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  # albert-base-v2-finetuned-ner
19
 
20
- This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.1105
23
- - Precision: 0.9005
24
- - Recall: 0.9134
25
- - F1: 0.9069
26
- - Accuracy: 0.9777
27
 
28
  ## Model description
29
 
@@ -54,9 +76,9 @@ The following hyperparameters were used during training:
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
- | 0.1227 | 1.0 | 2245 | 0.1038 | 0.8918 | 0.8839 | 0.8879 | 0.9730 |
58
- | 0.081 | 2.0 | 4490 | 0.1006 | 0.8889 | 0.9099 | 0.8993 | 0.9761 |
59
- | 0.0409 | 3.0 | 6735 | 0.1105 | 0.9005 | 0.9134 | 0.9069 | 0.9777 |
60
 
61
 
62
  ### Framework versions
 
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
5
+ datasets:
6
+ - conll2003
7
  metrics:
8
  - precision
9
  - recall
 
11
  - accuracy
12
  model-index:
13
  - name: albert-base-v2-finetuned-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: conll2003
20
+ type: conll2003
21
+ args: conll2003
22
+ metrics:
23
+ - name: Precision
24
+ type: precision
25
+ value: 0.9301181102362205
26
+ - name: Recall
27
+ type: recall
28
+ value: 0.9376033513394334
29
+ - name: F1
30
+ type: f1
31
+ value: 0.9338457315399397
32
+ - name: Accuracy
33
+ type: accuracy
34
+ value: 0.9851613086447802
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
39
 
40
  # albert-base-v2-finetuned-ner
41
 
42
+ This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the conll2003 dataset.
43
  It achieves the following results on the evaluation set:
44
+ - Loss: 0.0700
45
+ - Precision: 0.9301
46
+ - Recall: 0.9376
47
+ - F1: 0.9338
48
+ - Accuracy: 0.9852
49
 
50
  ## Model description
51
 
 
76
 
77
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
+ | 0.096 | 1.0 | 1756 | 0.0752 | 0.9163 | 0.9201 | 0.9182 | 0.9811 |
80
+ | 0.0481 | 2.0 | 3512 | 0.0761 | 0.9169 | 0.9293 | 0.9231 | 0.9830 |
81
+ | 0.0251 | 3.0 | 5268 | 0.0700 | 0.9301 | 0.9376 | 0.9338 | 0.9852 |
82
 
83
 
84
  ### Framework versions