Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# WikiBert2WikiBert
|
2 |
Bert language models can be employed for Summarization tasks. WikiBert2WikiBert is an encoder-decoder transformer model that is initialized using the Persian WikiBert Model weights. The WikiBert Model is a Bert language model which is fine-tuned on Persian Wikipedia. After using the WikiBert weights for initialization, the model is trained for five epochs on PN-summary and Persian BBC datasets.
|
3 |
|
@@ -33,27 +59,10 @@ input = 'your input comes here'
|
|
33 |
summary = generate_summary(input)
|
34 |
```
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
task_categories:
|
44 |
-
- summarization
|
45 |
-
- text generation
|
46 |
-
task_ids:
|
47 |
-
- news-articles-summarization
|
48 |
-
license:
|
49 |
-
- apache-2.0
|
50 |
-
multilinguality:
|
51 |
-
- monolingual
|
52 |
-
datasets:
|
53 |
-
- pn-summary
|
54 |
-
- XL-Sum
|
55 |
-
metrics:
|
56 |
-
- rouge-1
|
57 |
-
- rouge-2
|
58 |
-
- rouge-l
|
59 |
-
---
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- fa
|
4 |
+
tags:
|
5 |
+
- Wikipedia
|
6 |
+
- Summarizer
|
7 |
+
- bert2bert
|
8 |
+
task_categories:
|
9 |
+
- summarization
|
10 |
+
- text generation
|
11 |
+
task_ids:
|
12 |
+
- news-articles-summarization
|
13 |
+
license:
|
14 |
+
- apache-2.0
|
15 |
+
multilinguality:
|
16 |
+
- monolingual
|
17 |
+
datasets:
|
18 |
+
- pn-summary
|
19 |
+
- XL-Sum
|
20 |
+
metrics:
|
21 |
+
- rouge-1
|
22 |
+
- rouge-2
|
23 |
+
- rouge-l
|
24 |
+
---
|
25 |
+
|
26 |
+
|
27 |
# WikiBert2WikiBert
|
28 |
Bert language models can be employed for Summarization tasks. WikiBert2WikiBert is an encoder-decoder transformer model that is initialized using the Persian WikiBert Model weights. The WikiBert Model is a Bert language model which is fine-tuned on Persian Wikipedia. After using the WikiBert weights for initialization, the model is trained for five epochs on PN-summary and Persian BBC datasets.
|
29 |
|
|
|
59 |
summary = generate_summary(input)
|
60 |
```
|
61 |
|
62 |
+
## Evaluation
|
63 |
+
I separated 5 percent of the pn-summary for evaluation of the model. The rouge scores of the model are as follows:
|
64 |
+
|
65 |
+
| Rouge-1 | Rouge-2 | Rouge-l |
|
66 |
+
| ------------- | ------------- | ------------- |
|
67 |
+
| 38.97% | 18.42% | 34.50% |
|
68 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|