End of training
Browse files- README.md +79 -0
- preprocessor_config.json +14 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +80 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: microsoft/layoutlm-base-uncased
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- funsd
|
7 |
+
model-index:
|
8 |
+
- name: layoutlm-funsd
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# layoutlm-funsd
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.7048
|
20 |
+
- Answer: {'precision': 0.6989130434782609, 'recall': 0.7948084054388134, 'f1': 0.7437825332562175, 'number': 809}
|
21 |
+
- Header: {'precision': 0.3049645390070922, 'recall': 0.36134453781512604, 'f1': 0.3307692307692308, 'number': 119}
|
22 |
+
- Question: {'precision': 0.7769973661106233, 'recall': 0.8309859154929577, 'f1': 0.8030852994555354, 'number': 1065}
|
23 |
+
- Overall Precision: 0.7141
|
24 |
+
- Overall Recall: 0.7883
|
25 |
+
- Overall F1: 0.7493
|
26 |
+
- Overall Accuracy: 0.8041
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 3e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 15
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
57 |
+
| 1.8962 | 1.0 | 10 | 1.6314 | {'precision': 0.04096170970614425, 'recall': 0.05686032138442522, 'f1': 0.047619047619047616, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.21477162293488825, 'recall': 0.20751173708920187, 'f1': 0.21107927411652339, 'number': 1065} | 0.1241 | 0.1340 | 0.1288 | 0.3878 |
|
58 |
+
| 1.4949 | 2.0 | 20 | 1.2748 | {'precision': 0.16384915474642392, 'recall': 0.1557478368355995, 'f1': 0.1596958174904943, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.42642857142857143, 'recall': 0.5605633802816902, 'f1': 0.48438133874239353, 'number': 1065} | 0.3333 | 0.3628 | 0.3474 | 0.5644 |
|
59 |
+
| 1.1275 | 3.0 | 30 | 0.9637 | {'precision': 0.4481236203090508, 'recall': 0.5018541409147095, 'f1': 0.473469387755102, 'number': 809} | {'precision': 0.030303030303030304, 'recall': 0.008403361344537815, 'f1': 0.013157894736842105, 'number': 119} | {'precision': 0.6073883161512027, 'recall': 0.6638497652582159, 'f1': 0.6343651861821444, 'number': 1065} | 0.5297 | 0.5590 | 0.5439 | 0.6927 |
|
60 |
+
| 0.8515 | 4.0 | 40 | 0.8074 | {'precision': 0.5718446601941748, 'recall': 0.7280593325092707, 'f1': 0.6405655247417075, 'number': 809} | {'precision': 0.14492753623188406, 'recall': 0.08403361344537816, 'f1': 0.10638297872340426, 'number': 119} | {'precision': 0.6351132686084142, 'recall': 0.7370892018779343, 'f1': 0.6823120382442416, 'number': 1065} | 0.5927 | 0.6944 | 0.6396 | 0.7481 |
|
61 |
+
| 0.6885 | 5.0 | 50 | 0.7250 | {'precision': 0.6376963350785341, 'recall': 0.7527812113720643, 'f1': 0.6904761904761906, 'number': 809} | {'precision': 0.23529411764705882, 'recall': 0.13445378151260504, 'f1': 0.17112299465240638, 'number': 119} | {'precision': 0.7158081705150977, 'recall': 0.7568075117370892, 'f1': 0.735737106344135, 'number': 1065} | 0.6659 | 0.7180 | 0.6910 | 0.7705 |
|
62 |
+
| 0.582 | 6.0 | 60 | 0.6796 | {'precision': 0.6464323748668797, 'recall': 0.7503090234857849, 'f1': 0.694508009153318, 'number': 809} | {'precision': 0.2204724409448819, 'recall': 0.23529411764705882, 'f1': 0.22764227642276422, 'number': 119} | {'precision': 0.6873015873015873, 'recall': 0.8131455399061033, 'f1': 0.7449462365591398, 'number': 1065} | 0.6453 | 0.7531 | 0.6951 | 0.7920 |
|
63 |
+
| 0.505 | 7.0 | 70 | 0.6522 | {'precision': 0.6307385229540918, 'recall': 0.7812113720642769, 'f1': 0.6979569298729985, 'number': 809} | {'precision': 0.21367521367521367, 'recall': 0.21008403361344538, 'f1': 0.211864406779661, 'number': 119} | {'precision': 0.7270450751252087, 'recall': 0.8178403755868544, 'f1': 0.7697746354396818, 'number': 1065} | 0.6595 | 0.7667 | 0.7090 | 0.7973 |
|
64 |
+
| 0.4537 | 8.0 | 80 | 0.6537 | {'precision': 0.6717391304347826, 'recall': 0.7639060568603214, 'f1': 0.714864083285136, 'number': 809} | {'precision': 0.272, 'recall': 0.2857142857142857, 'f1': 0.27868852459016397, 'number': 119} | {'precision': 0.7433110367892977, 'recall': 0.8347417840375587, 'f1': 0.7863777089783283, 'number': 1065} | 0.6876 | 0.7732 | 0.7279 | 0.8010 |
|
65 |
+
| 0.3975 | 9.0 | 90 | 0.6624 | {'precision': 0.6649269311064718, 'recall': 0.7873918417799752, 'f1': 0.7209960384833051, 'number': 809} | {'precision': 0.2676056338028169, 'recall': 0.31932773109243695, 'f1': 0.2911877394636015, 'number': 119} | {'precision': 0.7576285963382737, 'recall': 0.815962441314554, 'f1': 0.7857142857142857, 'number': 1065} | 0.6871 | 0.7747 | 0.7283 | 0.8007 |
|
66 |
+
| 0.3619 | 10.0 | 100 | 0.6649 | {'precision': 0.6825053995680346, 'recall': 0.7812113720642769, 'f1': 0.7285302593659942, 'number': 809} | {'precision': 0.3178294573643411, 'recall': 0.3445378151260504, 'f1': 0.33064516129032256, 'number': 119} | {'precision': 0.7808098591549296, 'recall': 0.8328638497652582, 'f1': 0.8059972739663789, 'number': 1065} | 0.7120 | 0.7827 | 0.7457 | 0.8012 |
|
67 |
+
| 0.3266 | 11.0 | 110 | 0.6796 | {'precision': 0.6776246023329798, 'recall': 0.7898640296662547, 'f1': 0.7294520547945205, 'number': 809} | {'precision': 0.2740740740740741, 'recall': 0.31092436974789917, 'f1': 0.29133858267716534, 'number': 119} | {'precision': 0.7656116338751069, 'recall': 0.8403755868544601, 'f1': 0.801253357206804, 'number': 1065} | 0.6992 | 0.7883 | 0.7410 | 0.8007 |
|
68 |
+
| 0.3091 | 12.0 | 120 | 0.6863 | {'precision': 0.6908893709327549, 'recall': 0.7873918417799752, 'f1': 0.7359907567879839, 'number': 809} | {'precision': 0.3157894736842105, 'recall': 0.35294117647058826, 'f1': 0.33333333333333337, 'number': 119} | {'precision': 0.7680278019113814, 'recall': 0.8300469483568075, 'f1': 0.7978339350180504, 'number': 1065} | 0.7085 | 0.7842 | 0.7445 | 0.8036 |
|
69 |
+
| 0.2903 | 13.0 | 130 | 0.7025 | {'precision': 0.6961748633879782, 'recall': 0.7873918417799752, 'f1': 0.7389791183294663, 'number': 809} | {'precision': 0.29931972789115646, 'recall': 0.3697478991596639, 'f1': 0.33082706766917297, 'number': 119} | {'precision': 0.7734855136084284, 'recall': 0.8272300469483568, 'f1': 0.7994555353901996, 'number': 1065} | 0.7097 | 0.7837 | 0.7449 | 0.8029 |
|
70 |
+
| 0.2685 | 14.0 | 140 | 0.7073 | {'precision': 0.6958424507658644, 'recall': 0.7861557478368356, 'f1': 0.7382472431804992, 'number': 809} | {'precision': 0.2896551724137931, 'recall': 0.35294117647058826, 'f1': 0.31818181818181823, 'number': 119} | {'precision': 0.7727666955767563, 'recall': 0.8366197183098592, 'f1': 0.8034265103697025, 'number': 1065} | 0.7093 | 0.7873 | 0.7463 | 0.8034 |
|
71 |
+
| 0.2678 | 15.0 | 150 | 0.7048 | {'precision': 0.6989130434782609, 'recall': 0.7948084054388134, 'f1': 0.7437825332562175, 'number': 809} | {'precision': 0.3049645390070922, 'recall': 0.36134453781512604, 'f1': 0.3307692307692308, 'number': 119} | {'precision': 0.7769973661106233, 'recall': 0.8309859154929577, 'f1': 0.8030852994555354, 'number': 1065} | 0.7141 | 0.7883 | 0.7493 | 0.8041 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.34.1
|
77 |
+
- Pytorch 2.1.0+cu118
|
78 |
+
- Datasets 2.14.6
|
79 |
+
- Tokenizers 0.14.1
|
preprocessor_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_ocr": true,
|
3 |
+
"do_resize": true,
|
4 |
+
"feature_extractor_type": "LayoutLMv2FeatureExtractor",
|
5 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
6 |
+
"ocr_lang": null,
|
7 |
+
"processor_class": "LayoutLMv2Processor",
|
8 |
+
"resample": 2,
|
9 |
+
"size": {
|
10 |
+
"height": 224,
|
11 |
+
"width": 224
|
12 |
+
},
|
13 |
+
"tesseract_config": ""
|
14 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"apply_ocr": false,
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"cls_token_box": [
|
49 |
+
0,
|
50 |
+
0,
|
51 |
+
0,
|
52 |
+
0
|
53 |
+
],
|
54 |
+
"do_basic_tokenize": true,
|
55 |
+
"do_lower_case": true,
|
56 |
+
"mask_token": "[MASK]",
|
57 |
+
"model_max_length": 512,
|
58 |
+
"never_split": null,
|
59 |
+
"only_label_first_subword": true,
|
60 |
+
"pad_token": "[PAD]",
|
61 |
+
"pad_token_box": [
|
62 |
+
0,
|
63 |
+
0,
|
64 |
+
0,
|
65 |
+
0
|
66 |
+
],
|
67 |
+
"pad_token_label": -100,
|
68 |
+
"processor_class": "LayoutLMv2Processor",
|
69 |
+
"sep_token": "[SEP]",
|
70 |
+
"sep_token_box": [
|
71 |
+
1000,
|
72 |
+
1000,
|
73 |
+
1000,
|
74 |
+
1000
|
75 |
+
],
|
76 |
+
"strip_accents": null,
|
77 |
+
"tokenize_chinese_chars": true,
|
78 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
79 |
+
"unk_token": "[UNK]"
|
80 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|