File size: 6,890 Bytes
e1952b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import gradio as gr
import subprocess
import os
import threading
import queue
import json
# Função para rodar subprocessos
def run_subprocess(cmd, output_queue):
try:
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
for line in process.stdout:
output_queue.put(line)
process.wait()
if process.returncode == 0:
output_queue.put("Process completed successfully!")
else:
output_queue.put(f"Process failed with return code {process.returncode}")
except Exception as e:
output_queue.put(f"An error occurred: {str(e)}")
# Classe para gerenciar as configurações salvas
class ConfigManager:
def __init__(self, filepath="settings.json"):
self.filepath = filepath
self.settings = self.load_settings()
def save_settings(self):
with open(self.filepath, "w") as f:
json.dump(self.settings, f, indent=2, ensure_ascii=False)
def load_settings(self):
if os.path.exists(self.filepath):
with open(self.filepath, "r") as f:
return json.load(f)
return {"saved_combinations": {}}
def get_saved_combinations(self):
return self.settings.get("saved_combinations", {})
def add_combination(self, name, combination):
self.settings["saved_combinations"][name] = combination
self.save_settings()
config_manager = ConfigManager()
# Funções de treinamento e inferência
def run_training(model_type, config_path, start_checkpoint, results_path, data_paths, valid_paths, num_workers, device_ids):
if not (model_type and config_path and results_path and data_paths and valid_paths):
return "Error: Missing required inputs for training."
cmd = [
"python", "train.py",
"--model_type", model_type,
"--config_path", config_path,
"--results_path", results_path,
"--data_path", *data_paths.split(';'),
"--valid_path", *valid_paths.split(';'),
"--num_workers", str(num_workers),
"--device_ids", device_ids
]
if start_checkpoint:
cmd += ["--start_check_point", start_checkpoint]
output_queue = queue.Queue()
threading.Thread(target=run_subprocess, args=(cmd, output_queue), daemon=True).start()
output = []
while not output_queue.empty():
output.append(output_queue.get())
return "\n".join(output)
def run_inference(model_type, config_path, start_checkpoint, input_folder, store_dir, extract_instrumental):
if not (model_type and config_path and input_folder and store_dir):
return "Error: Missing required inputs for inference."
cmd = [
"python", "inference.py",
"--model_type", model_type,
"--config_path", config_path,
"--input_folder", input_folder,
"--store_dir", store_dir
]
if start_checkpoint:
cmd += ["--start_check_point", start_checkpoint]
if extract_instrumental:
cmd += ["--extract_instrumental"]
output_queue = queue.Queue()
threading.Thread(target=run_subprocess, args=(cmd, output_queue), daemon=True).start()
output = []
while not output_queue.empty():
output.append(output_queue.get())
return "\n".join(output)
# Interface Gradio
def add_preset(name, model_type, config_path, checkpoint):
if not name:
return "Error: Name is required to save a preset."
config_manager.add_combination(name, {
"model_type": model_type,
"config_path": config_path,
"checkpoint": checkpoint
})
return f"Preset '{name}' saved successfully."
saved_presets = config_manager.get_saved_combinations()
preset_names = list(saved_presets.keys())
def load_preset(name):
if name in saved_presets:
preset = saved_presets[name]
return preset["model_type"], preset["config_path"], preset["checkpoint"]
return "", "", ""
with gr.Blocks() as gui:
gr.Markdown("# Music Source Separation Training & Inference GUI")
# Treinamento
with gr.Accordion("Training Configuration", open=False):
model_type = gr.Dropdown(
choices=["apollo", "bandit", "htdemucs", "scnet"], label="Model Type"
)
config_path = gr.Textbox(label="Config File Path")
start_checkpoint = gr.Textbox(label="Checkpoint (Optional)")
results_path = gr.Textbox(label="Results Path")
data_paths = gr.Textbox(label="Data Paths (separated by ';')")
valid_paths = gr.Textbox(label="Validation Paths (separated by ';')")
num_workers = gr.Number(label="Number of Workers", value=4)
device_ids = gr.Textbox(label="Device IDs (comma-separated)", value="0")
train_output = gr.Textbox(label="Training Output", interactive=False)
gr.Button("Run Training").click(
run_training,
inputs=[
model_type, config_path, start_checkpoint, results_path, data_paths,
valid_paths, num_workers, device_ids
],
outputs=train_output
)
# Inferência
with gr.Accordion("Inference Configuration", open=False):
infer_model_type = gr.Dropdown(
choices=["apollo", "bandit", "htdemucs", "scnet"], label="Model Type"
)
infer_config_path = gr.Textbox(label="Config File Path")
infer_checkpoint = gr.Textbox(label="Checkpoint (Optional)")
input_folder = gr.Textbox(label="Input Folder")
store_dir = gr.Textbox(label="Output Folder")
extract_instrumental = gr.Checkbox(label="Extract Instrumental", value=False)
infer_output = gr.Textbox(label="Inference Output", interactive=False)
gr.Button("Run Inference").click(
run_inference,
inputs=[
infer_model_type, infer_config_path, infer_checkpoint, input_folder,
store_dir, extract_instrumental
],
outputs=infer_output
)
# Gerenciamento de Presets
with gr.Accordion("Presets", open=False):
preset_name = gr.Textbox(label="Preset Name")
preset_model_type = gr.Textbox(label="Model Type")
preset_config_path = gr.Textbox(label="Config Path")
preset_checkpoint = gr.Textbox(label="Checkpoint")
preset_feedback = gr.Textbox(label="Feedback", interactive=False)
gr.Button("Save Preset").click(
add_preset,
inputs=[preset_name, preset_model_type, preset_config_path, preset_checkpoint],
outputs=preset_feedback
)
preset_dropdown = gr.Dropdown(
choices=preset_names, label="Load Preset"
)
gr.Button("Load Preset").click(
load_preset, inputs=preset_dropdown, outputs=[preset_model_type, preset_config_path, preset_checkpoint]
)
gui.launch(share=True) |