End of training
Browse files
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: Ariffiq99/COPA_xlm_roberta_base_finetuned
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- f1
|
8 |
+
model-index:
|
9 |
+
- name: CRAB_COPA_xlm_roberta_base_finetuned
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# CRAB_COPA_xlm_roberta_base_finetuned
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [Ariffiq99/COPA_xlm_roberta_base_finetuned](https://huggingface.co/Ariffiq99/COPA_xlm_roberta_base_finetuned) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.9984
|
21 |
+
- F1: 0.7389
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 1e-05
|
41 |
+
- train_batch_size: 1
|
42 |
+
- eval_batch_size: 1
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 8
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
51 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
52 |
+
| 1.2704 | 1.0 | 2880 | 1.4786 | 0.6417 |
|
53 |
+
| 0.9705 | 2.0 | 5760 | 1.3520 | 0.6889 |
|
54 |
+
| 0.9099 | 3.0 | 8640 | 1.1632 | 0.7069 |
|
55 |
+
| 0.9405 | 4.0 | 11520 | 1.1806 | 0.6944 |
|
56 |
+
| 1.0841 | 5.0 | 14400 | 1.0165 | 0.7097 |
|
57 |
+
| 0.8958 | 6.0 | 17280 | 1.0538 | 0.7222 |
|
58 |
+
| 0.7811 | 7.0 | 20160 | 1.0732 | 0.7375 |
|
59 |
+
| 0.8317 | 8.0 | 23040 | 0.9984 | 0.7389 |
|
60 |
+
|
61 |
+
|
62 |
+
### Framework versions
|
63 |
+
|
64 |
+
- Transformers 4.41.1
|
65 |
+
- Pytorch 2.3.0+cu121
|
66 |
+
- Datasets 2.19.1
|
67 |
+
- Tokenizers 0.19.1
|