--- license: apache-2.0 tags: - merge - mergekit - Nexusflow/Starling-LM-7B-beta - FuseAI/FuseChat-7B-VaRM base_model: - Nexusflow/Starling-LM-7B-beta - FuseAI/FuseChat-7B-VaRM model-index: - name: L-MChat-7b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.61 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Artples/L-MChat-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.59 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Artples/L-MChat-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.44 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Artples/L-MChat-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 50.94 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Artples/L-MChat-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 81.37 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Artples/L-MChat-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.45 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Artples/L-MChat-7b name: Open LLM Leaderboard --- # L-MChat-7b
L-MChat-Series-Logo
L-MChat-7b is a merge of the following models: * [Nexusflow/Starling-LM-7B-beta](https://huggingface.co/Nexusflow/Starling-LM-7B-beta) * [FuseAI/FuseChat-7B-VaRM](https://huggingface.co/FuseAI/FuseChat-7B-VaRM) ## Configuration ```yaml slices: - sources: - model: Nexusflow/Starling-LM-7B-beta layer_range: [0, 32] - model: FuseAI/FuseChat-7B-VaRM layer_range: [0, 32] merge_method: slerp base_model: FuseAI/FuseChat-7B-VaRM parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Artples/M-LChat-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## License Apache 2.0 but you cannot use this model to directly compete with OpenAI. ## How? Usage of [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing). ## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Artples__L-MChat-7b) | Metric |Value| |---------------------------------|----:| |Avg. |69.57| |AI2 Reasoning Challenge (25-Shot)|65.61| |HellaSwag (10-Shot) |84.59| |MMLU (5-Shot) |65.44| |TruthfulQA (0-shot) |50.94| |Winogrande (5-shot) |81.37| |GSM8k (5-shot) |69.45|