ArunKr commited on
Commit
3769acb
·
verified ·
1 Parent(s): 5eeeb1c

LunarLander Trained

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 275.45 +/- 17.05
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cf779b72170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cf779b72200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cf779b72290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cf779b72320>", "_build": "<function ActorCriticPolicy._build at 0x7cf779b723b0>", "forward": "<function ActorCriticPolicy.forward at 0x7cf779b72440>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cf779b724d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cf779b72560>", "_predict": "<function ActorCriticPolicy._predict at 0x7cf779b725f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cf779b72680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cf779b72710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cf779b727a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cf77aa326c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716314847493534406, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMZCL0Wils9jhu5PcH4mL6wMk89fsrOPAAAAAAAAAAADTGoPSngb7p7rgS7cQgEuXcDsrpLSeo5AACAPwAAAADNZR49PySqP5Ybej5kEdu+QcSNO8//vrsAAAAAAAAAAGYyaD0UYKq62k/vvZrsNDxH4CC62V8iPQAAgD8AAAAAwCycPdcTJruu8UK9suolPRHeMDwaaQu+AACAPwAAgD9GNBc+Ty8DvJT0Ljy4TIi6jm9cvVLOY7sAAIA/AACAPzMcrrzPSRq8FUxBPU6ASr3tHkU8sm8aPgAAgD8AAIA/ZrONvFYUtD+Ctfi9z1gxvmtwLb1T08i9AAAAAAAAAABAfxw+tjJfvLpL57l0L+g3QwW+va7gGTkAAIA/AACAP8B2mz0d1qY/yCU3P7zEGL+zmqq6VYoxPgAAAAAAAAAAELZNvsW5oz83bwG/vQUQvwZj0r4T43u+AAAAAAAAAACaf/Y8CPoHPzyWx7tocQG/VLkUu++DxbwAAAAAAAAAADO+dD3SZ+m7eqdNvBrJPj0xfTW9gqssOwAAgD8AAIA/AHoFvWkjArwG8hi+tc2tPLRwYT2iI5C9AACAPwAAgD+6GGM+MfZMPg4E0b7j8HC+0ZTNvTYcxL0AAAAAAAAAAGbXNb0jVzk/j5mbPPKEJL+Crcy9fhcEPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHhvpIMBp6MAWyUS8qMAXSUR0CdHU4vN/vwdX2UKGgGR0Bw2goqkM1CaAdLwGgIR0CdHZ5eZ5RkdX2UKGgGR0ByJJmoR7JGaAdLzmgIR0CdHgsNUfgadX2UKGgGR0BkzyoESuhcaAdN6ANoCEdAnR6JDeCTU3V9lChoBkdAcd512q1gIGgHS7FoCEdAnR6qIFeOXHV9lChoBkdAckQYIBzV+mgHS7BoCEdAnR7B0Qsf73V9lChoBkdAcNdbQC0WuWgHS65oCEdAnR8ftdAxBXV9lChoBkdAcuy7ihnJ1mgHS8FoCEdAnR80R3/xUnV9lChoBkdAY0otKZlWfmgHTegDaAhHQJ0ffnoxHoZ1fZQoaAZHQHOBQIMSbphoB0vvaAhHQJ0ft7zCk451fZQoaAZHQHBqlvQ4S6FoB0uyaAhHQJ0f0TewcHZ1fZQoaAZHQHNAAam4y45oB0vRaAhHQJ0g9ElVtGd1fZQoaAZHQHJ6i/XXiBJoB0ukaAhHQJ0g9fBvaUR1fZQoaAZHQHGQCCvovBdoB0vWaAhHQJ0iPiT+vQp1fZQoaAZHQG5gNF8XvYxoB0u4aAhHQJ0imT2WY4R1fZQoaAZHQHBB0I1LrX1oB0uyaAhHQJ0i9fQa73B1fZQoaAZHQHFOBKxs2vVoB0umaAhHQJ0jV1jiGWV1fZQoaAZHQHJulIiC8OFoB0vJaAhHQJ0jc78vVVh1fZQoaAZHQG5w2tMfzSVoB0u6aAhHQJ0jknrpqyp1fZQoaAZHQHJ6uSOinHhoB0usaAhHQJ0jvlS0jTt1fZQoaAZHQHHtlpj+aSdoB0ugaAhHQJ0jzrJKaod1fZQoaAZHQG6iqQiiZfFoB0uvaAhHQJ0kLJyQxN91fZQoaAZHQHEowSzw+dNoB0vNaAhHQJ0koPBi1At1fZQoaAZHQHEskxVQyh1oB0uwaAhHQJ0k9f6XSjR1fZQoaAZHQHOP1t4zJp5oB0vMaAhHQJ0ldVT72td1fZQoaAZHQHCJKK+BYmtoB0u2aAhHQJ0mebrkbP11fZQoaAZHQHLZfvnbItFoB0vzaAhHQJ0m6k2xY7t1fZQoaAZHQHEMA6ySmqJoB0vWaAhHQJ0nf1PFefJ1fZQoaAZHQHMjOBUaQ3hoB0vFaAhHQJ0oaU6gdwN1fZQoaAZHQHDo1awD/2loB0upaAhHQJ0opAbADaJ1fZQoaAZHQHIjcwxnFpBoB0u0aAhHQJ0pN8rqdH51fZQoaAZHQHJZelCTlkpoB0vAaAhHQJ0pu9qUNa11fZQoaAZHQHJFX1SOzY5oB0vaaAhHQJ0p6VY6nzh1fZQoaAZHQHLcbe67NB5oB0vuaAhHQJ0qGOZLIxR1fZQoaAZHQHGkLNSqEOBoB0u+aAhHQJ0qKfXf6451fZQoaAZHQHJmhsl9jPRoB0uraAhHQJ0qTRIBikR1fZQoaAZHQHKFEqDsdDJoB0vZaAhHQJ0qbfhuO0d1fZQoaAZHQHEYtcbBGhFoB0utaAhHQJ0qqfPHDJl1fZQoaAZHQHNsgyRB/qhoB00QAWgIR0CdLGVuJk5IdX2UKGgGR0BxzCL3sXzlaAdL3GgIR0CdLJf3vhIfdX2UKGgGR0Bylx1hb4ahaAdLyWgIR0CdLPBLPD51dX2UKGgGR0By8O3G4qgAaAdLtWgIR0CdLSsSCe3AdX2UKGgGR0BzBFxxT850aAdL92gIR0CdLbmNBF/hdX2UKGgGR0BwWMWVNYbLaAdLwWgIR0CdLbU9IPK/dX2UKGgGR0BxQt4rz5GjaAdLvGgIR0CdLe7+DOC5dX2UKGgGR0Bzu8XizcASaAdLyGgIR0CdLqDjzZpSdX2UKGgGR0BxY1fb9If9aAdLrmgIR0CdLsJp35erdX2UKGgGR0BxqijqOcUeaAdLw2gIR0CdLvxJul41dX2UKGgGR0ByENHjIaLoaAdL1GgIR0CdL1PHktEodX2UKGgGR0BxgoLlV94NaAdL42gIR0CdL35Ec81XdX2UKGgGR0BxrKAskIHDaAdLz2gIR0CdL9pztCzDdX2UKGgGR0ByiSii7CizaAdL42gIR0CdL+et0V8DdX2UKGgGR0BxRDexfOUuaAdL0GgIR0CdMb3hXKbKdX2UKGgGR0BwtlbzK9wnaAdLwGgIR0CdMduHerMldX2UKGgGR0Byrwsf7rLRaAdL12gIR0CdMh47A+INdX2UKGgGR0ByWsjD8+A3aAdLw2gIR0CdMiktEofCdX2UKGgGR0BvGUyvcJt0aAdLuWgIR0CdMmI6bONYdX2UKGgGR0BwZz3UQTVUaAdLu2gIR0CdMml1r6+GdX2UKGgGR0Bw/6mgrYoRaAdLwmgIR0CdMtBVuJk5dX2UKGgGR0BwOxq8DjioaAdLt2gIR0CdM1hTwUg0dX2UKGgGR0BxKCH446wMaAdLvWgIR0CdM14Uvf0mdX2UKGgGR0BzQuJwbVBlaAdNPwJoCEdAnTNtvjwQUnV9lChoBkdAcTZFjurp7mgHS7xoCEdAnTOeVkc0cnV9lChoBkdAcpEbr1M/QmgHS7poCEdAnTQA+yJKrnV9lChoBkdAcekQ/X5FgGgHS7NoCEdAnTQs189fTnV9lChoBkdAcb70PpY9xWgHS+BoCEdAnTU4A0bcXXV9lChoBkdAcbjm51/2CmgHS6toCEdAnTZUNjLB9HV9lChoBkdAcQW0l7dBSmgHS6RoCEdAnTacOG0u2HV9lChoBkdAcQEm1YyO72gHS8xoCEdAnTapQcghbHV9lChoBkdAcxIOVxCIDmgHS9poCEdAnTbnz19ORHV9lChoBkdAc5HcgQpWm2gHS8doCEdAnTcU8vEjxHV9lChoBkdAcaNL9/BnBmgHS9VoCEdAnTckJKJ2uHV9lChoBkdAcI1b2Dg62mgHS9VoCEdAnTct5D7ZWnV9lChoBkdAccz+6y0KJGgHS6loCEdAnTdM6BAfMnV9lChoBkdAZANgHeJpFmgHTegDaAhHQJ031uEVWS51fZQoaAZHQHDNCuyNXHRoB0vIaAhHQJ03/bi6xxF1fZQoaAZHQHCRlmSQo1FoB0vOaAhHQJ04MRRMvh91fZQoaAZHQHDVhhUipvRoB0vFaAhHQJ04Nv3rUsp1fZQoaAZHQHFqw8nuy/toB0u4aAhHQJ04VcTrVvx1fZQoaAZHQHDZZtrKvFFoB0u7aAhHQJ04ifnOjZd1fZQoaAZHQHLFgrUb1h9oB0uqaAhHQJ06g0iyIHl1fZQoaAZHQHDWTRYzSCxoB0uqaAhHQJ069rXUYsN1fZQoaAZHQHMXG+bmU4doB0vRaAhHQJ07KQq7ROV1fZQoaAZHQHLdlmjCYTloB0vHaAhHQJ07LsLORkp1fZQoaAZHQHC3PeDWbw1oB0u0aAhHQJ07K5oXbdt1fZQoaAZHQHDc1+d9UjtoB0vLaAhHQJ07i/KyOaR1fZQoaAZHQHCXAS39aU1oB0unaAhHQJ07xRekYXR1fZQoaAZHQHJ8MtwrDqJoB0vHaAhHQJ070D0UXYV1fZQoaAZHQHBbP4ZdfLNoB0vTaAhHQJ07+JHiFTN1fZQoaAZHQHBLaLCN0eVoB0upaAhHQJ08DI5o4+91fZQoaAZHQHBRlqWTouBoB0uyaAhHQJ08OAMDwH91fZQoaAZHQHE05WV/tppoB0uzaAhHQJ08ma+evp11fZQoaAZHQHH87pmmLtNoB0vPaAhHQJ08933YcvN1fZQoaAZHQHNv+XRgJC1oB0vpaAhHQJ09Bj4Hoox1fZQoaAZHQHMsoUnG829oB0usaAhHQJ0+cISlFc91fZQoaAZHQHF1oA80UGpoB0uhaAhHQJ0+z+DOC5F1fZQoaAZHQG9k+wkgOjJoB0uraAhHQJ0/ERh+fAd1fZQoaAZHQHBBX1nM+vBoB0vHaAhHQJ0/jHfdhy91fZQoaAZHQHP5i3w1BMVoB0vCaAhHQJ0/nE9+w1R1fZQoaAZHQHHlYetCAtpoB0ueaAhHQJ0/rbpNbkh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 380, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9183f8d6688acae0fb0d4fa4d9291a31d17669f124859e0c7323a0599623fe5
3
+ size 147959
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7cf779b72170>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cf779b72200>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cf779b72290>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cf779b72320>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7cf779b723b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7cf779b72440>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cf779b724d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cf779b72560>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7cf779b725f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cf779b72680>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cf779b72710>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cf779b727a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7cf77aa326c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1716314847493534406,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMZCL0Wils9jhu5PcH4mL6wMk89fsrOPAAAAAAAAAAADTGoPSngb7p7rgS7cQgEuXcDsrpLSeo5AACAPwAAAADNZR49PySqP5Ybej5kEdu+QcSNO8//vrsAAAAAAAAAAGYyaD0UYKq62k/vvZrsNDxH4CC62V8iPQAAgD8AAAAAwCycPdcTJruu8UK9suolPRHeMDwaaQu+AACAPwAAgD9GNBc+Ty8DvJT0Ljy4TIi6jm9cvVLOY7sAAIA/AACAPzMcrrzPSRq8FUxBPU6ASr3tHkU8sm8aPgAAgD8AAIA/ZrONvFYUtD+Ctfi9z1gxvmtwLb1T08i9AAAAAAAAAABAfxw+tjJfvLpL57l0L+g3QwW+va7gGTkAAIA/AACAP8B2mz0d1qY/yCU3P7zEGL+zmqq6VYoxPgAAAAAAAAAAELZNvsW5oz83bwG/vQUQvwZj0r4T43u+AAAAAAAAAACaf/Y8CPoHPzyWx7tocQG/VLkUu++DxbwAAAAAAAAAADO+dD3SZ+m7eqdNvBrJPj0xfTW9gqssOwAAgD8AAIA/AHoFvWkjArwG8hi+tc2tPLRwYT2iI5C9AACAPwAAgD+6GGM+MfZMPg4E0b7j8HC+0ZTNvTYcxL0AAAAAAAAAAGbXNb0jVzk/j5mbPPKEJL+Crcy9fhcEPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHhvpIMBp6MAWyUS8qMAXSUR0CdHU4vN/vwdX2UKGgGR0Bw2goqkM1CaAdLwGgIR0CdHZ5eZ5RkdX2UKGgGR0ByJJmoR7JGaAdLzmgIR0CdHgsNUfgadX2UKGgGR0BkzyoESuhcaAdN6ANoCEdAnR6JDeCTU3V9lChoBkdAcd512q1gIGgHS7FoCEdAnR6qIFeOXHV9lChoBkdAckQYIBzV+mgHS7BoCEdAnR7B0Qsf73V9lChoBkdAcNdbQC0WuWgHS65oCEdAnR8ftdAxBXV9lChoBkdAcuy7ihnJ1mgHS8FoCEdAnR80R3/xUnV9lChoBkdAY0otKZlWfmgHTegDaAhHQJ0ffnoxHoZ1fZQoaAZHQHOBQIMSbphoB0vvaAhHQJ0ft7zCk451fZQoaAZHQHBqlvQ4S6FoB0uyaAhHQJ0f0TewcHZ1fZQoaAZHQHNAAam4y45oB0vRaAhHQJ0g9ElVtGd1fZQoaAZHQHJ6i/XXiBJoB0ukaAhHQJ0g9fBvaUR1fZQoaAZHQHGQCCvovBdoB0vWaAhHQJ0iPiT+vQp1fZQoaAZHQG5gNF8XvYxoB0u4aAhHQJ0imT2WY4R1fZQoaAZHQHBB0I1LrX1oB0uyaAhHQJ0i9fQa73B1fZQoaAZHQHFOBKxs2vVoB0umaAhHQJ0jV1jiGWV1fZQoaAZHQHJulIiC8OFoB0vJaAhHQJ0jc78vVVh1fZQoaAZHQG5w2tMfzSVoB0u6aAhHQJ0jknrpqyp1fZQoaAZHQHJ6uSOinHhoB0usaAhHQJ0jvlS0jTt1fZQoaAZHQHHtlpj+aSdoB0ugaAhHQJ0jzrJKaod1fZQoaAZHQG6iqQiiZfFoB0uvaAhHQJ0kLJyQxN91fZQoaAZHQHEowSzw+dNoB0vNaAhHQJ0koPBi1At1fZQoaAZHQHEskxVQyh1oB0uwaAhHQJ0k9f6XSjR1fZQoaAZHQHOP1t4zJp5oB0vMaAhHQJ0ldVT72td1fZQoaAZHQHCJKK+BYmtoB0u2aAhHQJ0mebrkbP11fZQoaAZHQHLZfvnbItFoB0vzaAhHQJ0m6k2xY7t1fZQoaAZHQHEMA6ySmqJoB0vWaAhHQJ0nf1PFefJ1fZQoaAZHQHMjOBUaQ3hoB0vFaAhHQJ0oaU6gdwN1fZQoaAZHQHDo1awD/2loB0upaAhHQJ0opAbADaJ1fZQoaAZHQHIjcwxnFpBoB0u0aAhHQJ0pN8rqdH51fZQoaAZHQHJZelCTlkpoB0vAaAhHQJ0pu9qUNa11fZQoaAZHQHJFX1SOzY5oB0vaaAhHQJ0p6VY6nzh1fZQoaAZHQHLcbe67NB5oB0vuaAhHQJ0qGOZLIxR1fZQoaAZHQHGkLNSqEOBoB0u+aAhHQJ0qKfXf6451fZQoaAZHQHJmhsl9jPRoB0uraAhHQJ0qTRIBikR1fZQoaAZHQHKFEqDsdDJoB0vZaAhHQJ0qbfhuO0d1fZQoaAZHQHEYtcbBGhFoB0utaAhHQJ0qqfPHDJl1fZQoaAZHQHNsgyRB/qhoB00QAWgIR0CdLGVuJk5IdX2UKGgGR0BxzCL3sXzlaAdL3GgIR0CdLJf3vhIfdX2UKGgGR0Bylx1hb4ahaAdLyWgIR0CdLPBLPD51dX2UKGgGR0By8O3G4qgAaAdLtWgIR0CdLSsSCe3AdX2UKGgGR0BzBFxxT850aAdL92gIR0CdLbmNBF/hdX2UKGgGR0BwWMWVNYbLaAdLwWgIR0CdLbU9IPK/dX2UKGgGR0BxQt4rz5GjaAdLvGgIR0CdLe7+DOC5dX2UKGgGR0Bzu8XizcASaAdLyGgIR0CdLqDjzZpSdX2UKGgGR0BxY1fb9If9aAdLrmgIR0CdLsJp35erdX2UKGgGR0BxqijqOcUeaAdLw2gIR0CdLvxJul41dX2UKGgGR0ByENHjIaLoaAdL1GgIR0CdL1PHktEodX2UKGgGR0BxgoLlV94NaAdL42gIR0CdL35Ec81XdX2UKGgGR0BxrKAskIHDaAdLz2gIR0CdL9pztCzDdX2UKGgGR0ByiSii7CizaAdL42gIR0CdL+et0V8DdX2UKGgGR0BxRDexfOUuaAdL0GgIR0CdMb3hXKbKdX2UKGgGR0BwtlbzK9wnaAdLwGgIR0CdMduHerMldX2UKGgGR0Byrwsf7rLRaAdL12gIR0CdMh47A+INdX2UKGgGR0ByWsjD8+A3aAdLw2gIR0CdMiktEofCdX2UKGgGR0BvGUyvcJt0aAdLuWgIR0CdMmI6bONYdX2UKGgGR0BwZz3UQTVUaAdLu2gIR0CdMml1r6+GdX2UKGgGR0Bw/6mgrYoRaAdLwmgIR0CdMtBVuJk5dX2UKGgGR0BwOxq8DjioaAdLt2gIR0CdM1hTwUg0dX2UKGgGR0BxKCH446wMaAdLvWgIR0CdM14Uvf0mdX2UKGgGR0BzQuJwbVBlaAdNPwJoCEdAnTNtvjwQUnV9lChoBkdAcTZFjurp7mgHS7xoCEdAnTOeVkc0cnV9lChoBkdAcpEbr1M/QmgHS7poCEdAnTQA+yJKrnV9lChoBkdAcekQ/X5FgGgHS7NoCEdAnTQs189fTnV9lChoBkdAcb70PpY9xWgHS+BoCEdAnTU4A0bcXXV9lChoBkdAcbjm51/2CmgHS6toCEdAnTZUNjLB9HV9lChoBkdAcQW0l7dBSmgHS6RoCEdAnTacOG0u2HV9lChoBkdAcQEm1YyO72gHS8xoCEdAnTapQcghbHV9lChoBkdAcxIOVxCIDmgHS9poCEdAnTbnz19ORHV9lChoBkdAc5HcgQpWm2gHS8doCEdAnTcU8vEjxHV9lChoBkdAcaNL9/BnBmgHS9VoCEdAnTckJKJ2uHV9lChoBkdAcI1b2Dg62mgHS9VoCEdAnTct5D7ZWnV9lChoBkdAccz+6y0KJGgHS6loCEdAnTdM6BAfMnV9lChoBkdAZANgHeJpFmgHTegDaAhHQJ031uEVWS51fZQoaAZHQHDNCuyNXHRoB0vIaAhHQJ03/bi6xxF1fZQoaAZHQHCRlmSQo1FoB0vOaAhHQJ04MRRMvh91fZQoaAZHQHDVhhUipvRoB0vFaAhHQJ04Nv3rUsp1fZQoaAZHQHFqw8nuy/toB0u4aAhHQJ04VcTrVvx1fZQoaAZHQHDZZtrKvFFoB0u7aAhHQJ04ifnOjZd1fZQoaAZHQHLFgrUb1h9oB0uqaAhHQJ06g0iyIHl1fZQoaAZHQHDWTRYzSCxoB0uqaAhHQJ069rXUYsN1fZQoaAZHQHMXG+bmU4doB0vRaAhHQJ07KQq7ROV1fZQoaAZHQHLdlmjCYTloB0vHaAhHQJ07LsLORkp1fZQoaAZHQHC3PeDWbw1oB0u0aAhHQJ07K5oXbdt1fZQoaAZHQHDc1+d9UjtoB0vLaAhHQJ07i/KyOaR1fZQoaAZHQHCXAS39aU1oB0unaAhHQJ07xRekYXR1fZQoaAZHQHJ8MtwrDqJoB0vHaAhHQJ070D0UXYV1fZQoaAZHQHBbP4ZdfLNoB0vTaAhHQJ07+JHiFTN1fZQoaAZHQHBLaLCN0eVoB0upaAhHQJ08DI5o4+91fZQoaAZHQHBRlqWTouBoB0uyaAhHQJ08OAMDwH91fZQoaAZHQHE05WV/tppoB0uzaAhHQJ08ma+evp11fZQoaAZHQHH87pmmLtNoB0vPaAhHQJ08933YcvN1fZQoaAZHQHNv+XRgJC1oB0vpaAhHQJ09Bj4Hoox1fZQoaAZHQHMsoUnG829oB0usaAhHQJ0+cISlFc91fZQoaAZHQHF1oA80UGpoB0uhaAhHQJ0+z+DOC5F1fZQoaAZHQG9k+wkgOjJoB0uraAhHQJ0/ERh+fAd1fZQoaAZHQHBBX1nM+vBoB0vHaAhHQJ0/jHfdhy91fZQoaAZHQHP5i3w1BMVoB0vCaAhHQJ0/nE9+w1R1fZQoaAZHQHHlYetCAtpoB0ueaAhHQJ0/rbpNbkh1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 380,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8504b057c0417db2185cb3c20e62679f51a1f2631193b316c09e93077408320
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80180ae154d7ec0882979ec197ab792f3e774886de63ef9ee463d919cd440be4
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (168 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 275.4459994, "std_reward": 17.047442663565146, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-21T18:38:46.937155"}