File size: 9,984 Bytes
df2c70a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import gradio as gr\n",
    "import numpy as np\n",
    "from PIL import Image, ImageDraw, ImageFont\n",
    "import matplotlib.pyplot as plt\n",
    "import cv2\n",
    "from segment_anything import sam_model_registry\n",
    "from segment_anything.predictor_sammed import SammedPredictor\n",
    "from argparse import Namespace\n",
    "import torch\n",
    "import torchvision\n",
    "import os, sys\n",
    "import random\n",
    "import warnings\n",
    "from scipy import ndimage\n",
    "import functools\n",
    "\n",
    "\n",
    "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
    "args = Namespace()\n",
    "args.device = device\n",
    "args.image_size = 256\n",
    "args.encoder_adapter = True\n",
    "args.sam_checkpoint = \"pretrain_model/sam-med2d_b.pth\"  #sam_vit_b.pth  sam-med2d_b.pth"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def load_model(args):\n",
    "    model = sam_model_registry[\"vit_b\"](args).to(args.device)\n",
    "    model.eval()\n",
    "    predictor = SammedPredictor(model)\n",
    "    return predictor\n",
    "\n",
    "\n",
    "predictor_with_adapter = load_model(args)\n",
    "args.encoder_adapter = False\n",
    "predictor_without_adapter = load_model(args)\n",
    "\n",
    "def run_sammed(input_image, selected_points, last_mask, adapter_type):\n",
    "    if adapter_type == \"SAM-Med2D-B\":\n",
    "        predictor = predictor_with_adapter\n",
    "    else:\n",
    "        predictor = predictor_without_adapter\n",
    "        \n",
    "    image_pil = Image.fromarray(input_image) #.convert(\"RGB\")\n",
    "    image = input_image\n",
    "    H,W,_ = image.shape\n",
    "    predictor.set_image(image)\n",
    "    centers = np.array([a for a,b in selected_points ])\n",
    "    point_coords = centers\n",
    "    point_labels = np.array([b for a,b in selected_points ])\n",
    "\n",
    "    masks, _, logits = predictor.predict(\n",
    "    point_coords=point_coords,\n",
    "    point_labels=point_labels,\n",
    "    mask_input = last_mask,\n",
    "    multimask_output=True \n",
    "    ) \n",
    "\n",
    "    mask_image = Image.new('RGBA', (W, H), color=(0, 0, 0, 0))\n",
    "    mask_draw = ImageDraw.Draw(mask_image)\n",
    "    for mask in masks:\n",
    "        draw_mask(mask, mask_draw, random_color=False)\n",
    "    image_draw = ImageDraw.Draw(image_pil)\n",
    "\n",
    "    draw_point(selected_points, image_draw)\n",
    "\n",
    "    image_pil = image_pil.convert('RGBA')\n",
    "    image_pil.alpha_composite(mask_image)\n",
    "    last_mask = torch.sigmoid(torch.as_tensor(logits, dtype=torch.float, device=device))\n",
    "    return [(image_pil, mask_image), last_mask]\n",
    "\n",
    "\n",
    "def draw_mask(mask, draw, random_color=False):\n",
    "    if random_color:\n",
    "        color = (random.randint(0, 255), random.randint(\n",
    "            0, 255), random.randint(0, 255), 153)\n",
    "    else:\n",
    "        color = (30, 144, 255, 153)\n",
    "\n",
    "    nonzero_coords = np.transpose(np.nonzero(mask))\n",
    "\n",
    "    for coord in nonzero_coords:\n",
    "        draw.point(coord[::-1], fill=color)\n",
    "\n",
    "def draw_point(point, draw, r=5):\n",
    "    show_point = []\n",
    "    for point, label in point:\n",
    "        x,y = point\n",
    "        if label == 1:\n",
    "            draw.ellipse((x-r, y-r, x+r, y+r), fill='green')\n",
    "        elif label == 0:\n",
    "            draw.ellipse((x-r, y-r, x+r, y+r), fill='red')\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Keyboard interruption in main thread... closing server.\n"
     ]
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "colors = [(255, 0, 0), (0, 255, 0)]\n",
    "markers = [1, 5]\n",
    "block = gr.Blocks()\n",
    "with block:\n",
    "    with gr.Row():\n",
    "        gr.Markdown(\n",
    "            '''# SAM-Med2D!🚀\n",
    "            SAM-Med2D is an interactive segmentation model based on the SAM model for medical scenarios, supporting multi-point interactive segmentation and box interaction. \n",
    "            Currently, only multi-point interaction is supported in this application. More information can be found on [**GitHub**](https://github.com/uni-medical/SAM-Med2D/tree/main).\n",
    "            '''\n",
    "        )\n",
    "        with gr.Row():\n",
    "            # select model\n",
    "            adapter_type = gr.Dropdown([\"SAM-Med2D-B\", \"SAM-Med2D-B_w/o_adapter\"], value='SAM-Med2D-B', label=\"Select Adapter\")\n",
    "            # adapter_type.change(fn = update_model, inputs=[adapter_type])\n",
    "          \n",
    "    with gr.Tab(label='Image'):\n",
    "        with gr.Row().style(equal_height=True):\n",
    "            with gr.Column():\n",
    "                # input image\n",
    "                original_image = gr.State(value=None)   # store original image without points, default None\n",
    "                input_image = gr.Image(type=\"numpy\")\n",
    "                # point prompt\n",
    "                with gr.Column():\n",
    "                    selected_points = gr.State([])      # store points\n",
    "                    last_mask = gr.State(None) \n",
    "                    with gr.Row():\n",
    "                        gr.Markdown('You can click on the image to select points prompt. Default: foreground_point.')\n",
    "                        undo_button = gr.Button('Undo point')\n",
    "                    radio = gr.Radio(['foreground_point', 'background_point'], label='point labels')\n",
    "                button = gr.Button(\"Run!\")\n",
    "        \n",
    "            gallery_sammed = gr.Gallery(\n",
    "                    label=\"Generated images\", show_label=False, elem_id=\"gallery\").style(preview=True, grid=2,object_fit=\"scale-down\")\n",
    "            \n",
    "    def process_example(img):\n",
    "        return img, [], None    \n",
    "    \n",
    "    def store_img(img):\n",
    "        return img, [], None  # when new image is uploaded, `selected_points` should be empty\n",
    "    input_image.upload(\n",
    "        store_img,\n",
    "        [input_image],\n",
    "        [original_image, selected_points, last_mask]\n",
    "    )\n",
    "    # user click the image to get points, and show the points on the image\n",
    "    def get_point(img, sel_pix, point_type, evt: gr.SelectData):\n",
    "        if point_type == 'foreground_point':\n",
    "            sel_pix.append((evt.index, 1))   # append the foreground_point\n",
    "        elif point_type == 'background_point':\n",
    "            sel_pix.append((evt.index, 0))    # append the background_point\n",
    "        else:\n",
    "            sel_pix.append((evt.index, 1))    # default foreground_point\n",
    "        # draw points\n",
    "        for point, label in sel_pix:\n",
    "            cv2.drawMarker(img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)\n",
    "        # if img[..., 0][0, 0] == img[..., 2][0, 0]:  # BGR to RGB\n",
    "        #     img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
    "        return img if isinstance(img, np.ndarray) else np.array(img)\n",
    "    \n",
    "    input_image.select(\n",
    "        get_point,\n",
    "        [input_image, selected_points, radio],\n",
    "        [input_image],\n",
    "    )\n",
    "\n",
    "    # undo the selected point\n",
    "    def undo_points(orig_img, sel_pix):\n",
    "        if isinstance(orig_img, int):   # if orig_img is int, the image if select from examples\n",
    "            temp = cv2.imread(image_examples[orig_img][0])\n",
    "            temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)\n",
    "        else:\n",
    "            temp = orig_img.copy()\n",
    "        # draw points\n",
    "        if len(sel_pix) != 0:\n",
    "            sel_pix.pop()\n",
    "            for point, label in sel_pix:\n",
    "                cv2.drawMarker(temp, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)\n",
    "        if temp[..., 0][0, 0] == temp[..., 2][0, 0]:  # BGR to RGB\n",
    "            temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)\n",
    "        return temp, None if isinstance(temp, np.ndarray) else np.array(temp), None\n",
    "    \n",
    "    undo_button.click(\n",
    "        undo_points,\n",
    "        [original_image, selected_points],\n",
    "        [input_image, last_mask]\n",
    "    )\n",
    "\n",
    "    with gr.Row():\n",
    "        with gr.Column():\n",
    "            gr.Examples([\"data_demo/images/amos_0507_31.png\", \"data_demo/images/s0114_111.png\" ], inputs=[input_image], outputs=[original_image, selected_points,last_mask], fn=process_example, run_on_click=True)\n",
    "\n",
    "    button.click(fn=run_sammed, inputs=[original_image, selected_points, last_mask, adapter_type], outputs=[gallery_sammed, last_mask])\n",
    "\n",
    "block.launch(debug=True, share=True, show_error=True)\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "MMseg",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.0"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}