File size: 9,984 Bytes
df2c70a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import gradio as gr\n",
"import numpy as np\n",
"from PIL import Image, ImageDraw, ImageFont\n",
"import matplotlib.pyplot as plt\n",
"import cv2\n",
"from segment_anything import sam_model_registry\n",
"from segment_anything.predictor_sammed import SammedPredictor\n",
"from argparse import Namespace\n",
"import torch\n",
"import torchvision\n",
"import os, sys\n",
"import random\n",
"import warnings\n",
"from scipy import ndimage\n",
"import functools\n",
"\n",
"\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"args = Namespace()\n",
"args.device = device\n",
"args.image_size = 256\n",
"args.encoder_adapter = True\n",
"args.sam_checkpoint = \"pretrain_model/sam-med2d_b.pth\" #sam_vit_b.pth sam-med2d_b.pth"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def load_model(args):\n",
" model = sam_model_registry[\"vit_b\"](args).to(args.device)\n",
" model.eval()\n",
" predictor = SammedPredictor(model)\n",
" return predictor\n",
"\n",
"\n",
"predictor_with_adapter = load_model(args)\n",
"args.encoder_adapter = False\n",
"predictor_without_adapter = load_model(args)\n",
"\n",
"def run_sammed(input_image, selected_points, last_mask, adapter_type):\n",
" if adapter_type == \"SAM-Med2D-B\":\n",
" predictor = predictor_with_adapter\n",
" else:\n",
" predictor = predictor_without_adapter\n",
" \n",
" image_pil = Image.fromarray(input_image) #.convert(\"RGB\")\n",
" image = input_image\n",
" H,W,_ = image.shape\n",
" predictor.set_image(image)\n",
" centers = np.array([a for a,b in selected_points ])\n",
" point_coords = centers\n",
" point_labels = np.array([b for a,b in selected_points ])\n",
"\n",
" masks, _, logits = predictor.predict(\n",
" point_coords=point_coords,\n",
" point_labels=point_labels,\n",
" mask_input = last_mask,\n",
" multimask_output=True \n",
" ) \n",
"\n",
" mask_image = Image.new('RGBA', (W, H), color=(0, 0, 0, 0))\n",
" mask_draw = ImageDraw.Draw(mask_image)\n",
" for mask in masks:\n",
" draw_mask(mask, mask_draw, random_color=False)\n",
" image_draw = ImageDraw.Draw(image_pil)\n",
"\n",
" draw_point(selected_points, image_draw)\n",
"\n",
" image_pil = image_pil.convert('RGBA')\n",
" image_pil.alpha_composite(mask_image)\n",
" last_mask = torch.sigmoid(torch.as_tensor(logits, dtype=torch.float, device=device))\n",
" return [(image_pil, mask_image), last_mask]\n",
"\n",
"\n",
"def draw_mask(mask, draw, random_color=False):\n",
" if random_color:\n",
" color = (random.randint(0, 255), random.randint(\n",
" 0, 255), random.randint(0, 255), 153)\n",
" else:\n",
" color = (30, 144, 255, 153)\n",
"\n",
" nonzero_coords = np.transpose(np.nonzero(mask))\n",
"\n",
" for coord in nonzero_coords:\n",
" draw.point(coord[::-1], fill=color)\n",
"\n",
"def draw_point(point, draw, r=5):\n",
" show_point = []\n",
" for point, label in point:\n",
" x,y = point\n",
" if label == 1:\n",
" draw.ellipse((x-r, y-r, x+r, y+r), fill='green')\n",
" elif label == 0:\n",
" draw.ellipse((x-r, y-r, x+r, y+r), fill='red')\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Keyboard interruption in main thread... closing server.\n"
]
},
{
"data": {
"text/plain": []
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"colors = [(255, 0, 0), (0, 255, 0)]\n",
"markers = [1, 5]\n",
"block = gr.Blocks()\n",
"with block:\n",
" with gr.Row():\n",
" gr.Markdown(\n",
" '''# SAM-Med2D!🚀\n",
" SAM-Med2D is an interactive segmentation model based on the SAM model for medical scenarios, supporting multi-point interactive segmentation and box interaction. \n",
" Currently, only multi-point interaction is supported in this application. More information can be found on [**GitHub**](https://github.com/uni-medical/SAM-Med2D/tree/main).\n",
" '''\n",
" )\n",
" with gr.Row():\n",
" # select model\n",
" adapter_type = gr.Dropdown([\"SAM-Med2D-B\", \"SAM-Med2D-B_w/o_adapter\"], value='SAM-Med2D-B', label=\"Select Adapter\")\n",
" # adapter_type.change(fn = update_model, inputs=[adapter_type])\n",
" \n",
" with gr.Tab(label='Image'):\n",
" with gr.Row().style(equal_height=True):\n",
" with gr.Column():\n",
" # input image\n",
" original_image = gr.State(value=None) # store original image without points, default None\n",
" input_image = gr.Image(type=\"numpy\")\n",
" # point prompt\n",
" with gr.Column():\n",
" selected_points = gr.State([]) # store points\n",
" last_mask = gr.State(None) \n",
" with gr.Row():\n",
" gr.Markdown('You can click on the image to select points prompt. Default: foreground_point.')\n",
" undo_button = gr.Button('Undo point')\n",
" radio = gr.Radio(['foreground_point', 'background_point'], label='point labels')\n",
" button = gr.Button(\"Run!\")\n",
" \n",
" gallery_sammed = gr.Gallery(\n",
" label=\"Generated images\", show_label=False, elem_id=\"gallery\").style(preview=True, grid=2,object_fit=\"scale-down\")\n",
" \n",
" def process_example(img):\n",
" return img, [], None \n",
" \n",
" def store_img(img):\n",
" return img, [], None # when new image is uploaded, `selected_points` should be empty\n",
" input_image.upload(\n",
" store_img,\n",
" [input_image],\n",
" [original_image, selected_points, last_mask]\n",
" )\n",
" # user click the image to get points, and show the points on the image\n",
" def get_point(img, sel_pix, point_type, evt: gr.SelectData):\n",
" if point_type == 'foreground_point':\n",
" sel_pix.append((evt.index, 1)) # append the foreground_point\n",
" elif point_type == 'background_point':\n",
" sel_pix.append((evt.index, 0)) # append the background_point\n",
" else:\n",
" sel_pix.append((evt.index, 1)) # default foreground_point\n",
" # draw points\n",
" for point, label in sel_pix:\n",
" cv2.drawMarker(img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)\n",
" # if img[..., 0][0, 0] == img[..., 2][0, 0]: # BGR to RGB\n",
" # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
" return img if isinstance(img, np.ndarray) else np.array(img)\n",
" \n",
" input_image.select(\n",
" get_point,\n",
" [input_image, selected_points, radio],\n",
" [input_image],\n",
" )\n",
"\n",
" # undo the selected point\n",
" def undo_points(orig_img, sel_pix):\n",
" if isinstance(orig_img, int): # if orig_img is int, the image if select from examples\n",
" temp = cv2.imread(image_examples[orig_img][0])\n",
" temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)\n",
" else:\n",
" temp = orig_img.copy()\n",
" # draw points\n",
" if len(sel_pix) != 0:\n",
" sel_pix.pop()\n",
" for point, label in sel_pix:\n",
" cv2.drawMarker(temp, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)\n",
" if temp[..., 0][0, 0] == temp[..., 2][0, 0]: # BGR to RGB\n",
" temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)\n",
" return temp, None if isinstance(temp, np.ndarray) else np.array(temp), None\n",
" \n",
" undo_button.click(\n",
" undo_points,\n",
" [original_image, selected_points],\n",
" [input_image, last_mask]\n",
" )\n",
"\n",
" with gr.Row():\n",
" with gr.Column():\n",
" gr.Examples([\"data_demo/images/amos_0507_31.png\", \"data_demo/images/s0114_111.png\" ], inputs=[input_image], outputs=[original_image, selected_points,last_mask], fn=process_example, run_on_click=True)\n",
"\n",
" button.click(fn=run_sammed, inputs=[original_image, selected_points, last_mask, adapter_type], outputs=[gallery_sammed, last_mask])\n",
"\n",
"block.launch(debug=True, share=True, show_error=True)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "MMseg",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.0"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|