File size: 9,020 Bytes
df2c70a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from segment_anything import sam_model_registry
import torch.nn as nn
import torch
import argparse
import os
from utils import select_random_points, FocalDiceloss_IoULoss, generate_point, setting_prompt_none, save_masks
from torch.utils.data import DataLoader
from DataLoader import TestingDataset
from metrics import SegMetrics
import time
from tqdm import tqdm
import numpy as np
from torch.nn import functional as F
import logging
import datetime
import cv2
import random
import csv
import json


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--work_dir", type=str, default="workdir", help="work dir")
    parser.add_argument("--run_name", type=str, default="sammed", help="run model name")
    parser.add_argument("--batch_size", type=int, default=1, help="batch size")
    parser.add_argument("--image_size", type=int, default=256, help="image_size")
    parser.add_argument('--device', type=str, default='cuda')
    parser.add_argument("--data_path", type=str, default="data_demo", help="train data path") 
    parser.add_argument("--metrics", nargs='+', default=['iou', 'dice'], help="metrics")
    parser.add_argument("--model_type", type=str, default="vit_b", help="sam model_type")
    parser.add_argument("--sam_checkpoint", type=str, default="pretrain_model/sam-med2d_b.pth", help="sam checkpoint")
    parser.add_argument("--boxes_prompt", type=bool, default=True, help="use boxes prompt")
    parser.add_argument("--point_num", type=int, default=1, help="point num")
    parser.add_argument("--iter_point", type=int, default=1, help="iter num") 
    parser.add_argument("--multimask", type=bool, default=True, help="ouput multimask")
    parser.add_argument("--encoder_adapter", type=bool, default=True, help="use adapter")
    parser.add_argument("--prompt_path", type=str, default=None, help="fix prompt path")
    parser.add_argument("--save_pred", type=bool, default=False, help="save reslut")
    args = parser.parse_args()
    if args.iter_point > 1:
        args.point_num = 1
    return args


def to_device(batch_input, device):
    device_input = {}
    for key, value in batch_input.items():
        if value is not None:
            if key=='image' or key=='label':
                device_input[key] = value.float().to(device)
            elif type(value) is list or type(value) is torch.Size:
                 device_input[key] = value
            else:
                device_input[key] = value.to(device)
        else:
            device_input[key] = value
    return device_input


def postprocess_masks(low_res_masks, image_size, original_size):
    ori_h, ori_w = original_size
    masks = F.interpolate(
        low_res_masks,
        (image_size, image_size),
        mode="bilinear",
        align_corners=False,
        )
    
    if ori_h < image_size and ori_w < image_size:
        top = torch.div((image_size - ori_h), 2, rounding_mode='trunc')  #(image_size - ori_h) // 2
        left = torch.div((image_size - ori_w), 2, rounding_mode='trunc') #(image_size - ori_w) // 2
        masks = masks[..., top : ori_h + top, left : ori_w + left]
        pad = (top, left)
    else:
        masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
        pad = None 
    return masks, pad


def prompt_and_decoder(args, batched_input, ddp_model, image_embeddings):
    if  batched_input["point_coords"] is not None:
        points = (batched_input["point_coords"], batched_input["point_labels"])
    else:
        points = None

    with torch.no_grad():
        sparse_embeddings, dense_embeddings = ddp_model.prompt_encoder(
            points=points,
            boxes=batched_input.get("boxes", None),
            masks=batched_input.get("mask_inputs", None),
        )

        low_res_masks, iou_predictions = ddp_model.mask_decoder(
            image_embeddings = image_embeddings,
            image_pe = ddp_model.prompt_encoder.get_dense_pe(),
            sparse_prompt_embeddings=sparse_embeddings,
            dense_prompt_embeddings=dense_embeddings,
            multimask_output=args.multimask,
        )
    
    if args.multimask:
        max_values, max_indexs = torch.max(iou_predictions, dim=1)
        max_values = max_values.unsqueeze(1)
        iou_predictions = max_values
        low_res = []
        for i, idx in enumerate(max_indexs):
            low_res.append(low_res_masks[i:i+1, idx])
        low_res_masks = torch.stack(low_res, 0)
    masks = F.interpolate(low_res_masks,(args.image_size, args.image_size), mode="bilinear", align_corners=False,)
    return masks, low_res_masks, iou_predictions


def is_not_saved(save_path, mask_name):
    masks_path = os.path.join(save_path, f"{mask_name}")
    if os.path.exists(masks_path):
        return False
    else:
        return True

def main(args):
    print('*'*100)
    for key, value in vars(args).items():
        print(key + ': ' + str(value))
    print('*'*100)

    model = sam_model_registry[args.model_type](args).to(args.device) 

    criterion = FocalDiceloss_IoULoss()
    test_dataset = TestingDataset(data_path=args.data_path, image_size=args.image_size, mode='test', requires_name=True, point_num=args.point_num, return_ori_mask=True, prompt_path=args.prompt_path)
    test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False, num_workers=4)
    print('Test data:', len(test_loader))

    test_pbar = tqdm(test_loader)
    l = len(test_loader)

    model.eval()
    test_loss = []
    test_iter_metrics = [0] * len(args.metrics)
    test_metrics = {}
    prompt_dict = {}

    for i, batched_input in enumerate(test_pbar):
        batched_input = to_device(batched_input, args.device)
        ori_labels = batched_input["ori_label"]
        original_size = batched_input["original_size"]
        labels = batched_input["label"]
        img_name = batched_input['name'][0]
        if args.prompt_path is None:
            prompt_dict[img_name] = {
                        "boxes": batched_input["boxes"].squeeze(1).cpu().numpy().tolist(),
                        "point_coords": batched_input["point_coords"].squeeze(1).cpu().numpy().tolist(),
                        "point_labels": batched_input["point_labels"].squeeze(1).cpu().numpy().tolist()
                        }

        with torch.no_grad():
            image_embeddings = model.image_encoder(batched_input["image"])

        if args.boxes_prompt:
            save_path = os.path.join(args.work_dir, args.run_name, "boxes_prompt")
            batched_input["point_coords"], batched_input["point_labels"] = None, None
            masks, low_res_masks, iou_predictions = prompt_and_decoder(args, batched_input, model, image_embeddings)
            points_show = None

        else:
            save_path = os.path.join(f"{args.work_dir}", args.run_name, f"iter{args.iter_point if args.iter_point > 1 else args.point_num}_prompt")
            batched_input["boxes"] = None
            point_coords, point_labels = [batched_input["point_coords"]], [batched_input["point_labels"]]
     
            for iter in range(args.iter_point):
                masks, low_res_masks, iou_predictions = prompt_and_decoder(args, batched_input, model, image_embeddings)
                if iter != args.iter_point-1:
                    batched_input = generate_point(masks, labels, low_res_masks, batched_input, args.point_num)
                    batched_input = to_device(batched_input, args.device)
                    point_coords.append(batched_input["point_coords"])
                    point_labels.append(batched_input["point_labels"])
                    batched_input["point_coords"] = torch.concat(point_coords,dim=1)
                    batched_input["point_labels"] = torch.concat(point_labels, dim=1)
  
            points_show = (torch.concat(point_coords, dim=1), torch.concat(point_labels, dim=1))

        masks, pad = postprocess_masks(low_res_masks, args.image_size, original_size)
        if args.save_pred:
            save_masks(masks, save_path, img_name, args.image_size, original_size, pad, batched_input.get("boxes", None), points_show)

        loss = criterion(masks, ori_labels, iou_predictions)
        test_loss.append(loss.item())

        test_batch_metrics = SegMetrics(masks, ori_labels, args.metrics)
        test_batch_metrics = [float('{:.4f}'.format(metric)) for metric in test_batch_metrics]

        for j in range(len(args.metrics)):
            test_iter_metrics[j] += test_batch_metrics[j]
  
    test_iter_metrics = [metric / l for metric in test_iter_metrics]
    test_metrics = {args.metrics[i]: '{:.4f}'.format(test_iter_metrics[i]) for i in range(len(test_iter_metrics))}

    average_loss = np.mean(test_loss)
    if args.prompt_path is None:
        with open(os.path.join(args.work_dir,f'{args.image_size}_prompt.json'), 'w') as f:
            json.dump(prompt_dict, f, indent=2)
    print(f"Test loss: {average_loss:.4f}, metrics: {test_metrics}")

if __name__ == '__main__':
    args = parse_args()
    main(args)