Ascetu commited on
Commit
8ee1ea3
1 Parent(s): fa8e4ee

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +90 -0
app.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoProcessor, AutoModelForCausalLM
3
+ import spaces
4
+
5
+
6
+ from PIL import Image
7
+
8
+
9
+ import subprocess
10
+ subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
11
+
12
+ model = AutoModelForCausalLM.from_pretrained('Ascetu/yungen', trust_remote_code=True).to("cuda").eval()
13
+
14
+ processor = AutoProcessor.from_pretrained('Ascetu/yungen', trust_remote_code=True)
15
+
16
+
17
+ TITLE = "# [Florence-2-DocVQA Demo](https://huggingface.co/HuggingFaceM4/Florence-2-DocVQA)"
18
+ DESCRIPTION = "The demo for Florence-2 fine-tuned on DocVQA dataset. You can find the notebook [here](https://colab.research.google.com/drive/1hKDrJ5AH_o7I95PtZ9__VlCTNAo1Gjpf?usp=sharing). Read more about Florence-2 fine-tuning [here](finetune-florence2)."
19
+
20
+
21
+ colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
22
+ 'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
23
+
24
+ @spaces.GPU
25
+ def run_example(task_prompt, image, text_input=None):
26
+ if text_input is None:
27
+ prompt = task_prompt
28
+ else:
29
+ prompt = task_prompt + text_input
30
+ inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
31
+ generated_ids = model.generate(
32
+ input_ids=inputs["input_ids"],
33
+ pixel_values=inputs["pixel_values"],
34
+ max_new_tokens=1024,
35
+ early_stopping=False,
36
+ do_sample=False,
37
+ num_beams=3,
38
+ )
39
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
40
+ parsed_answer = processor.post_process_generation(
41
+ generated_text,
42
+ task=task_prompt,
43
+ image_size=(image.width, image.height)
44
+ )
45
+ return parsed_answer
46
+
47
+ def process_image(image, text_input=None):
48
+ image = Image.fromarray(image) # Convert NumPy array to PIL Image
49
+ task_prompt = '<DocVQA>'
50
+ results = run_example(task_prompt, image, text_input)[task_prompt].replace("<pad>", "")
51
+ return results
52
+
53
+
54
+ css = """
55
+ #output {
56
+ height: 500px;
57
+ overflow: auto;
58
+ border: 1px solid #ccc;
59
+ }
60
+ """
61
+
62
+ with gr.Blocks(css=css) as demo:
63
+ gr.Markdown(TITLE)
64
+ gr.Markdown(DESCRIPTION)
65
+ with gr.Tab(label="Florence-2 Image Captioning"):
66
+ with gr.Row():
67
+ with gr.Column():
68
+ input_img = gr.Image(label="Input Picture")
69
+ text_input = gr.Textbox(label="Text Input (optional)")
70
+ submit_btn = gr.Button(value="Submit")
71
+ with gr.Column():
72
+ output_text = gr.Textbox(label="Output Text")
73
+
74
+ gr.Examples(
75
+ examples=[
76
+ ["idefics2_architecture.png", 'How many tokens per image does it use?'],
77
+ ["idefics2_architecture.png", "What type of encoder does the model use?"],
78
+ ["idefics2_architecture.png", 'Up to which size can the images be?'],
79
+ ["image.jpg", "What's the share of Industry Switchers Gained?"]
80
+ ],
81
+ inputs=[input_img, text_input],
82
+ outputs=[output_text],
83
+ fn=process_image,
84
+ cache_examples=True,
85
+ label='Try the examples below'
86
+ )
87
+
88
+ submit_btn.click(process_image, [input_img, text_input], [output_text])
89
+
90
+ demo.launch(debug=True)