Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
3 |
+
import spaces
|
4 |
+
|
5 |
+
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
|
9 |
+
import subprocess
|
10 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
11 |
+
|
12 |
+
model = AutoModelForCausalLM.from_pretrained('Ascetu/yungen', trust_remote_code=True).to("cuda").eval()
|
13 |
+
|
14 |
+
processor = AutoProcessor.from_pretrained('Ascetu/yungen', trust_remote_code=True)
|
15 |
+
|
16 |
+
|
17 |
+
TITLE = "# [Florence-2-DocVQA Demo](https://huggingface.co/HuggingFaceM4/Florence-2-DocVQA)"
|
18 |
+
DESCRIPTION = "The demo for Florence-2 fine-tuned on DocVQA dataset. You can find the notebook [here](https://colab.research.google.com/drive/1hKDrJ5AH_o7I95PtZ9__VlCTNAo1Gjpf?usp=sharing). Read more about Florence-2 fine-tuning [here](finetune-florence2)."
|
19 |
+
|
20 |
+
|
21 |
+
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
22 |
+
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
23 |
+
|
24 |
+
@spaces.GPU
|
25 |
+
def run_example(task_prompt, image, text_input=None):
|
26 |
+
if text_input is None:
|
27 |
+
prompt = task_prompt
|
28 |
+
else:
|
29 |
+
prompt = task_prompt + text_input
|
30 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
|
31 |
+
generated_ids = model.generate(
|
32 |
+
input_ids=inputs["input_ids"],
|
33 |
+
pixel_values=inputs["pixel_values"],
|
34 |
+
max_new_tokens=1024,
|
35 |
+
early_stopping=False,
|
36 |
+
do_sample=False,
|
37 |
+
num_beams=3,
|
38 |
+
)
|
39 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
40 |
+
parsed_answer = processor.post_process_generation(
|
41 |
+
generated_text,
|
42 |
+
task=task_prompt,
|
43 |
+
image_size=(image.width, image.height)
|
44 |
+
)
|
45 |
+
return parsed_answer
|
46 |
+
|
47 |
+
def process_image(image, text_input=None):
|
48 |
+
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
49 |
+
task_prompt = '<DocVQA>'
|
50 |
+
results = run_example(task_prompt, image, text_input)[task_prompt].replace("<pad>", "")
|
51 |
+
return results
|
52 |
+
|
53 |
+
|
54 |
+
css = """
|
55 |
+
#output {
|
56 |
+
height: 500px;
|
57 |
+
overflow: auto;
|
58 |
+
border: 1px solid #ccc;
|
59 |
+
}
|
60 |
+
"""
|
61 |
+
|
62 |
+
with gr.Blocks(css=css) as demo:
|
63 |
+
gr.Markdown(TITLE)
|
64 |
+
gr.Markdown(DESCRIPTION)
|
65 |
+
with gr.Tab(label="Florence-2 Image Captioning"):
|
66 |
+
with gr.Row():
|
67 |
+
with gr.Column():
|
68 |
+
input_img = gr.Image(label="Input Picture")
|
69 |
+
text_input = gr.Textbox(label="Text Input (optional)")
|
70 |
+
submit_btn = gr.Button(value="Submit")
|
71 |
+
with gr.Column():
|
72 |
+
output_text = gr.Textbox(label="Output Text")
|
73 |
+
|
74 |
+
gr.Examples(
|
75 |
+
examples=[
|
76 |
+
["idefics2_architecture.png", 'How many tokens per image does it use?'],
|
77 |
+
["idefics2_architecture.png", "What type of encoder does the model use?"],
|
78 |
+
["idefics2_architecture.png", 'Up to which size can the images be?'],
|
79 |
+
["image.jpg", "What's the share of Industry Switchers Gained?"]
|
80 |
+
],
|
81 |
+
inputs=[input_img, text_input],
|
82 |
+
outputs=[output_text],
|
83 |
+
fn=process_image,
|
84 |
+
cache_examples=True,
|
85 |
+
label='Try the examples below'
|
86 |
+
)
|
87 |
+
|
88 |
+
submit_btn.click(process_image, [input_img, text_input], [output_text])
|
89 |
+
|
90 |
+
demo.launch(debug=True)
|