Safetensors
English
gpt2
Ashed00 commited on
Commit
5c35520
·
verified ·
1 Parent(s): 34ab639

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +109 -0
README.md ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - OxAISH-AL-LLM/wiki_toxic
5
+ - textdetox/multilingual_toxic_spans
6
+ language:
7
+ - en
8
+ base_model:
9
+ - openai-community/gpt2
10
+ tags:
11
+ - not-for-all-audiences
12
+ ---
13
+
14
+ # Model Card for Toxic Text GEN
15
+
16
+ This model is a decision Tranformer for text generation with controlled toxicity (0-1).
17
+
18
+ ## Model Details
19
+
20
+ ### Model Description
21
+
22
+ Made using a decision transformer, it can generate toxic sentences based on a toxicity control (defined as reward-to-go/rtg).
23
+
24
+ Current text generation is not very coherent due to lack of variety in training data and low compute.
25
+
26
+ - **Developed by:** [Ashed00]
27
+ - **Finetuned from model:** [GPT-2]
28
+
29
+ ### Model Sources [optional]
30
+
31
+
32
+ - **Repository:** [https://github.com/Ashu-00/NLP-Implementations/tree/main/Decision_Transformer]
33
+ - **Demo:** Soon
34
+
35
+ ## Uses
36
+
37
+ Fun, little experiment.
38
+
39
+
40
+ ## Bias, Risks, and Limitations
41
+
42
+ This model is biased based on its training data. I take no responsibility for its generation.
43
+
44
+ Most generated text is non-coherent due to lack of variety of training data.
45
+
46
+ ## How to Get Started with the Model
47
+
48
+ ```python
49
+
50
+ import torch.nn.functional as F
51
+
52
+ def generate_conditioned_text2(model, tokenizer, prompt, target_rtg, max_length=50, temperature=1.0, top_k=50):
53
+ inputs = tokenizer(prompt, return_tensors="pt")
54
+ input_ids = inputs["input_ids"].to(device)
55
+ attention_mask = inputs["attention_mask"].to(device)
56
+
57
+ # Create RTG tensor with the target value for each token in the prompt
58
+ rtg = torch.tensor([[target_rtg] * input_ids.shape[1]], dtype=torch.float).to(device)
59
+
60
+ seq_length = input_ids.shape[1]
61
+ for _ in range(max_length):
62
+ with torch.no_grad():
63
+ # Slice rtg to match current sequence length
64
+ rtg_current = rtg[:, :seq_length]
65
+ outputs = model(
66
+ input_ids=input_ids,
67
+ attention_mask=attention_mask,
68
+ rtg=rtg_current,
69
+ return_dict=True
70
+ )
71
+
72
+ # Get next token logits and apply temperature scaling
73
+ next_token_logits = outputs["logits"][:, -1, :] / temperature
74
+
75
+ # Apply top-k filtering
76
+ top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k)
77
+ probabilities = F.softmax(top_k_logits, dim=-1)
78
+ next_token = top_k_indices[0, torch.multinomial(probabilities, num_samples=1)]
79
+
80
+ # Append the predicted token to input_ids and update attention mask
81
+
82
+ input_ids = torch.cat([input_ids, next_token], dim=-1)
83
+ attention_mask = torch.cat([attention_mask, torch.ones_like(next_token)], dim=-1)
84
+
85
+ # Append the target reward for the new token
86
+ new_rtg = torch.tensor([[target_rtg]], dtype=torch.float).to(device)
87
+ rtg = torch.cat([rtg, new_rtg], dim=1)
88
+
89
+ # Stop if EOS token is generated
90
+ if next_token.item() == tokenizer.eos_token_id:
91
+ break
92
+
93
+ seq_length += 1
94
+
95
+ return tokenizer.decode(input_ids[0], skip_special_tokens=True)
96
+
97
+ less_toxic_text = generate_conditioned_text2(model, tokenizer, prompt, target_rtg=1)
98
+ more_toxic_text = generate_conditioned_text2(model, tokenizer, prompt, target_rtg=0.0)
99
+ avg_toxic = generate_conditioned_text2(model,tokenizer, prompt, target_rtg=0.5 )
100
+
101
+ print("More Toxic Text:", less_toxic_text)
102
+ print("Less Toxic Text:", more_toxic_text)
103
+ print("Avg Toxic Text:", avg_toxic)
104
+
105
+ ```
106
+
107
+ ## Training Details
108
+
109
+ Refer to the github for training datasets and procedure.