Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- pl
|
4 |
+
tags:
|
5 |
+
- audio
|
6 |
+
- automatic-speech-recognition
|
7 |
+
- transformers.js
|
8 |
+
pipeline_tag: automatic-speech-recognition
|
9 |
+
license: mit
|
10 |
+
library_name: transformers
|
11 |
+
---
|
12 |
+
|
13 |
+
# Polish Distil-Whisper: distil-large-v3
|
14 |
+
|
15 |
+
Distil-Whisper was proposed in the paper [Robust Knowledge Distillation via Large-Scale Pseudo Labelling](https://arxiv.org/abs/2311.00430).
|
16 |
+
|
17 |
+
It is a distilled version of the Whisper model that is **3 times faster**, 49% smaller. This is the repository for distil-large-v3-pl, a distilled variant of [Whisper large-v3](https://huggingface.co/openai/whisper-large-v3).
|
18 |
+
|
19 |
+
|
20 |
+
## Usage
|
21 |
+
|
22 |
+
Distil-Whisper is supported in Hugging Face 🤗 Transformers from version 4.35 onwards. To run the model, first
|
23 |
+
install the latest version of the Transformers library. For this example, we'll also install 🤗 Datasets to load toy
|
24 |
+
audio dataset from the Hugging Face Hub:
|
25 |
+
|
26 |
+
```bash
|
27 |
+
pip install --upgrade pip
|
28 |
+
pip install --upgrade transformers accelerate datasets[audio]
|
29 |
+
```
|
30 |
+
|
31 |
+
### Short-Form Transcription
|
32 |
+
|
33 |
+
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
34 |
+
class to transcribe short-form audio files (< 30-seconds) as follows:
|
35 |
+
|
36 |
+
```python
|
37 |
+
import torch
|
38 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
39 |
+
from datasets import load_dataset
|
40 |
+
|
41 |
+
|
42 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
43 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
44 |
+
|
45 |
+
model_id = "Aspik101/distil-whisper-large-v3-pl"
|
46 |
+
|
47 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
48 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
49 |
+
)
|
50 |
+
model.to(device)
|
51 |
+
|
52 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
53 |
+
|
54 |
+
pipe = pipeline(
|
55 |
+
"automatic-speech-recognition",
|
56 |
+
model=model,
|
57 |
+
tokenizer=processor.tokenizer,
|
58 |
+
feature_extractor=processor.feature_extractor,
|
59 |
+
max_new_tokens=128,
|
60 |
+
torch_dtype=torch_dtype,
|
61 |
+
device=device,
|
62 |
+
)
|
63 |
+
|
64 |
+
dataset = load_dataset("mozilla-foundation/common_voice_13_0", "pl", split="test")
|
65 |
+
sample = dataset[0]["audio"]
|
66 |
+
|
67 |
+
result = pipe(sample)
|
68 |
+
print(result["text"])
|
69 |
+
```
|
70 |
+
|
71 |
+
To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline:
|
72 |
+
```diff
|
73 |
+
- result = pipe(sample)
|
74 |
+
+ result = pipe("audio.mp3")
|
75 |
+
```
|
76 |
+
|
77 |
+
### Long-Form Transcription
|
78 |
+
|
79 |
+
Distil-Whisper uses a chunked algorithm to transcribe long-form audio files (> 30-seconds). In practice, this chunked long-form algorithm
|
80 |
+
is 9x faster than the sequential algorithm proposed by OpenAI in the Whisper paper (see Table 7 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)).
|
81 |
+
|
82 |
+
To enable chunking, pass the `chunk_length_s` parameter to the `pipeline`. For Distil-Whisper, a chunk length of 15-seconds
|
83 |
+
is optimal. To activate batching, pass the argument `batch_size`:
|
84 |
+
|
85 |
+
```python
|
86 |
+
import torch
|
87 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
88 |
+
from datasets import load_dataset
|
89 |
+
|
90 |
+
|
91 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
92 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
93 |
+
|
94 |
+
model_id = "Aspik101/distil-whisper-large-v3-pl"
|
95 |
+
|
96 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
97 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
98 |
+
)
|
99 |
+
model.to(device)
|
100 |
+
|
101 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
102 |
+
|
103 |
+
pipe = pipeline(
|
104 |
+
"automatic-speech-recognition",
|
105 |
+
model=model,
|
106 |
+
tokenizer=processor.tokenizer,
|
107 |
+
feature_extractor=processor.feature_extractor,
|
108 |
+
max_new_tokens=128,
|
109 |
+
chunk_length_s=15,
|
110 |
+
batch_size=16,
|
111 |
+
torch_dtype=torch_dtype,
|
112 |
+
device=device,
|
113 |
+
)
|
114 |
+
|
115 |
+
dataset = load_dataset("mozilla-foundation/common_voice_13_0", "pl", split="test")
|
116 |
+
sample = dataset[0]["audio"]
|
117 |
+
|
118 |
+
result = pipe(sample)
|
119 |
+
print(result["text"])
|
120 |
+
```
|
121 |
+
|
122 |
+
<!---
|
123 |
+
**Tip:** The pipeline can also be used to transcribe an audio file from a remote URL, for example:
|
124 |
+
|
125 |
+
```python
|
126 |
+
result = pipe("https://huggingface.co/datasets/sanchit-gandhi/librispeech_long/resolve/main/audio.wav")
|
127 |
+
```
|
128 |
+
--->
|