File size: 11,548 Bytes
7eebd5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import functools
import math
from array import array
import torch
import torch.nn as nn
from torch.nn import functional as F
from typing import List, Optional, Union, Iterable, Tuple, Mapping
from transformers import PretrainedConfig
from vllm.attention import AttentionMetadata
from vllm.config import CacheConfig
from vllm.distributed import get_pp_group
from vllm.inputs import InputContext, INPUT_REGISTRY
from vllm.model_executor.layers.linear import ColumnParallelLinear
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.gpt2 import GPT2Block
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalInputs
from vllm.sequence import IntermediateTensors, SequenceData, VLLM_TOKEN_ID_ARRAY_TYPE
from vllm.model_executor.models.interfaces import SupportsMultiModal
from TTS.tts.layers.xtts.latent_encoder import ConditioningEncoder # noqa
from TTS.tts.layers.xtts.perceiver_encoder import PerceiverResampler # noqa
from TTS.TTS.tts.layers.xtts.gpt import LearnedPositionEmbeddings
# Constants for token calculation
_AUDIO_PLACEHOLDER_TOKEN = 8192 # Using XTTS start_audio_token as placeholder
_AUDIO_TOKENS_PER_SECOND = 6.25
_CODE_STRIDE_LEN = 1024
def get_xtts_max_audio_tokens(ctx: InputContext) -> int:
"""Calculate maximum audio tokens based on text context and audio duration."""
# Based on GPT config and common XTTS settings
text_context = ctx.model_config.max_seq_len - 100 # Reserve space for text
# Allow for ~30 seconds of audio (similar to whisper chunks)
max_audio_duration = 30.0
audio_tokens = math.ceil(max_audio_duration * _AUDIO_TOKENS_PER_SECOND)
total_tokens = text_context + audio_tokens + 4 # +4 for special tokens
return min(total_tokens, 1000) # Cap at 1000 tokens as specified
def dummy_seq_data_for_xtts(
ctx: InputContext,
seq_len: int,
audio_count: int,
) -> SequenceData:
"""Create dummy sequence data for XTTS profiling."""
# Calculate audio token space needed
audio_len_tokens = math.ceil(_AUDIO_TOKENS_PER_SECOND * 5) # Assume 5s per chunk
audio_placeholder = array(
VLLM_TOKEN_ID_ARRAY_TYPE,
[_AUDIO_PLACEHOLDER_TOKEN]
) * audio_len_tokens
# Add separator between chunks
audio_token_ids = (audio_placeholder + array(VLLM_TOKEN_ID_ARRAY_TYPE, [0])) * audio_count
# Fill remaining sequence with padding
other_token_ids = array(VLLM_TOKEN_ID_ARRAY_TYPE, [0]) * (seq_len - len(audio_token_ids))
return SequenceData(audio_token_ids + other_token_ids)
def dummy_conditioning_for_xtts(
ctx: InputContext,
audio_count: int,
) -> dict:
"""Create dummy conditioning data for XTTS."""
return {
"cond_latents": [(torch.zeros(80, 1024), 22050) for _ in range(audio_count)]
}
def dummy_data_for_xtts(
ctx: InputContext,
seq_len: int,
mm_counts: Mapping[str, int],
) -> Tuple[SequenceData, dict]:
"""Create complete dummy data for XTTS profiling."""
audio_count = mm_counts["audio"]
seq_data = dummy_seq_data_for_xtts(ctx, seq_len, audio_count)
cond_data = dummy_conditioning_for_xtts(ctx, audio_count)
return (seq_data, cond_data)
def input_mapper_for_xtts(ctx: InputContext, data: object) -> MultiModalInputs:
"""Map input data to XTTS format."""
if not isinstance(data, list):
data = [data]
# Each item should be a tuple of (mel_spec, sample_rate)
for audio_input in data:
if not isinstance(audio_input, tuple):
raise NotImplementedError(f"Unsupported data type: {type(audio_input)}")
return MultiModalInputs({"cond_latents": data})
@MULTIMODAL_REGISTRY.register_input_mapper("audio", input_mapper_for_xtts)
@MULTIMODAL_REGISTRY.register_max_multimodal_tokens("audio", get_xtts_max_audio_tokens)
@INPUT_REGISTRY.register_dummy_data(dummy_data_for_xtts)
class XttsGPT(nn.Module, SupportsMultiModal):
def __init__(
self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional["QuantizationConfig"] = None,
):
super().__init__()
self.config = config
self.quant_config = quant_config
# XTTS specific components
self.conditioning_encoder = ConditioningEncoder(
80, config.n_embd, num_attn_heads=config.n_head
)
if config.use_perceiver_resampler:
self.conditioning_perceiver = PerceiverResampler(
dim=config.n_embd,
depth=2,
dim_context=config.n_embd,
num_latents=32,
dim_head=64,
heads=8,
ff_mult=4,
use_flash_attn=False,
)
# Core GPT components following VLLM pattern
self.gpt = XttsGPT2Model(
config,
cache_config,
quant_config,
prefix="gpt"
)
# Prediction heads
self.text_head = ColumnParallelLinear(
config.n_embd,
config.vocab_size,
bias=False,
quant_config=quant_config,
prefix="text_head"
)
self.mel_head = ColumnParallelLinear(
config.n_embd,
config.num_audio_tokens,
bias=False,
quant_config=quant_config,
prefix="mel_head"
)
self.sampler = Sampler()
def get_style_emb(self, cond_input: torch.Tensor, return_latent: bool = False) -> torch.Tensor:
"""Get conditioning embeddings from mel spectrograms."""
if not return_latent:
if cond_input.ndim == 4:
cond_input = cond_input.squeeze(1)
conds = self.conditioning_encoder(cond_input)
if hasattr(self, 'conditioning_perceiver'):
conds = self.conditioning_perceiver(
conds.permute(0, 2, 1)
).transpose(1, 2)
else:
conds = cond_input.unsqueeze(1)
return conds
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
cond_latents: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass following VLLM pattern."""
if cond_latents is not None:
# Combine conditioning with input embeddings
input_embeds = self.gpt.get_input_embeddings()(input_ids)
combined_embeds = torch.cat([cond_latents, input_embeds], dim=1)
hidden_states = self.gpt(
inputs_embeds=combined_embeds,
positions=positions,
kv_caches=kv_caches,
attn_metadata=attn_metadata,
intermediate_tensors=intermediate_tensors,
)
else:
hidden_states = self.gpt(
input_ids=input_ids,
positions=positions,
kv_caches=kv_caches,
attn_metadata=attn_metadata,
intermediate_tensors=intermediate_tensors,
)
return hidden_states
def compute_logits( # useless but kept for compatibility
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> torch.Tensor:
"""Compute output logits."""
text_logits = self.text_head(hidden_states[sampling_metadata.selected_token_indices])
mel_logits = self.mel_head(hidden_states[sampling_metadata.selected_token_indices])
return torch.cat([text_logits, mel_logits], dim=1)
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
"""Sample next tokens using VLLM sampler."""
return self.sampler(logits, sampling_metadata)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
"""Load weights following VLLM pattern."""
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in weights:
if name not in params_dict:
continue
param = params_dict[name]
if "c_attn" in name or "c_proj" in name or "c_fc" in name:
if name.endswith(".weight"):
loaded_weight = loaded_weight.t()
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
class XttsGPT2Model(nn.Module):
"""VLLM-style implementation of GPT2 core architecture."""
def __init__(
self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional["QuantizationConfig"] = None,
prefix: str = "",
):
super().__init__()
self.config = config
self.text_embedding = VocabParallelEmbedding(config.number_text_tokens, config.n_embd)
self.mel_embedding = VocabParallelEmbedding(config.num_audio_tokens, config.n_embd)
self.text_pos_embedding = (
LearnedPositionEmbeddings(config.max_text_seq_len, config.n_embd)
if config.max_mel_seq_len != -1
else functools.partial(config.null_position_embeddings, dim=config.n_embd)
)
self.mel_pos_embedding = (
LearnedPositionEmbeddings(config.max_mel_seq_len, config.n_embd)
if config.max_mel_seq_len != -1
else functools.partial(config.null_position_embeddings, dim=config.n_embd)
)
# Build gpt blocks
self.h = nn.ModuleList([
GPT2Block(
config,
cache_config,
quant_config,
prefix=f"{prefix}.h.{i}"
) for i in range(config.num_hidden_layers)
])
self.final_norm = nn.LayerNorm(
config.n_embd,
eps=config.layer_norm_epsilon
)
def forward( # TODO: this is not correct, allieeate it with the correct implementation
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
for i in range(self.start_layer, self.end_layer):
layer = self.h[i]
hidden_states = layer(hidden_states,
kv_caches[i - self.start_layer],
attn_metadata)
if not get_pp_group().is_last_rank:
return IntermediateTensors({"hidden_states": hidden_states})
hidden_states = self.ln_f(hidden_states)
return hidden_states |