from dataclasses import asdict, dataclass, field from typing import Dict, Optional, List from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) @dataclass class XTTSAudioConfig: """Configuration for audio processing parameters""" sample_rate: int = 22050 output_sample_rate: int = 24000 mel_channels: int = 80 hop_length: int = 256 win_length: int = 1024 n_fft: int = 1024 fmin: int = 0 fmax: int = 8000 power: float = 1.0 mel_norms_file: Optional[str] = None class XTTSGPTConfig(PretrainedConfig): """Configuration class for the GPT component of XTTS""" model_type = "xtts_gpt" def __init__( self, # Model architecture vocab_size: int = 256, num_chars: int = 255, # GPT parameters gpt_batch_size: int = 1, gpt_max_audio_tokens: int = 605, gpt_max_text_tokens: int = 402, gpt_max_prompt_tokens: int = 70, gpt_layers: int = 30, gpt_n_model_channels: int = 1024, gpt_n_heads: int = 16, gpt_number_text_tokens: int = 6681, gpt_start_text_token: Optional[int] = None, gpt_stop_text_token: Optional[int] = None, gpt_num_audio_tokens: int = 1026, gpt_start_audio_token: int = 1024, gpt_stop_audio_token: int = 1025, gpt_code_stride_len: int = 1024, gpt_use_masking_gt_prompt_approach: bool = True, gpt_use_perceiver_resampler: bool = True, gpt_checkpointing: bool = False, gpt_train_solo_embeddings: bool = False, # Training parameters enable_redaction: bool = False, kv_cache: bool = True, perceiver_cond_length_compression: int = 256, label_smoothing: float = 0.0, # Generation parameters temperature: float = 0.75, length_penalty: float = 1.0, repetition_penalty: float = 5.0, top_k: int = 50, top_p: float = 0.85, gpt_cond_len: int = 30, gpt_cond_chunk_len: int = 4, max_ref_len: int = 30, sound_norm_refs: bool = False, # Audio processing audio_config: Optional[XTTSAudioConfig] = None, # Constants and limits duration_const: int = 102400, char_limits: Optional[Dict[str, int]] = None, languages: Optional[List[str]] = None, pad_token_id: Optional[int] = None, bos_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, **kwargs, ): if char_limits is None: char_limits = { "en": 250, "de": 253, "fr": 273, "es": 239, "it": 213, "pt": 203, "pl": 224, "zh": 82, "ar": 166, "cs": 186, "ru": 182, "nl": 251, "tr": 226, "ja": 71, "hu": 224, "ko": 95, } if languages is None: languages = [ "en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "hu", "ko", "ja", "hi" ] if audio_config is None: audio_config = XTTSAudioConfig() super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs ) self.vocab_size = vocab_size self.num_chars = num_chars # GPT parameters self.gpt_batch_size = gpt_batch_size self.gpt_max_audio_tokens = gpt_max_audio_tokens self.gpt_max_text_tokens = gpt_max_text_tokens self.gpt_max_prompt_tokens = gpt_max_prompt_tokens self.gpt_layers = gpt_layers self.gpt_n_model_channels = gpt_n_model_channels self.gpt_n_heads = gpt_n_heads self.gpt_number_text_tokens = gpt_number_text_tokens self.gpt_start_text_token = gpt_start_text_token self.gpt_stop_text_token = gpt_stop_text_token self.gpt_num_audio_tokens = gpt_num_audio_tokens self.gpt_start_audio_token = gpt_start_audio_token self.gpt_stop_audio_token = gpt_stop_audio_token self.gpt_code_stride_len = gpt_code_stride_len self.gpt_use_masking_gt_prompt_approach = gpt_use_masking_gt_prompt_approach self.gpt_use_perceiver_resampler = gpt_use_perceiver_resampler self.gpt_checkpointing = gpt_checkpointing self.gpt_train_solo_embeddings = gpt_train_solo_embeddings # Training parameters self.enable_redaction = enable_redaction self.kv_cache = kv_cache self.perceiver_cond_length_compression = perceiver_cond_length_compression self.label_smoothing = label_smoothing # Generation parameters self.temperature = temperature self.length_penalty = length_penalty self.repetition_penalty = repetition_penalty self.top_k = top_k self.top_p = top_p self.gpt_cond_len = gpt_cond_len self.gpt_cond_chunk_len = gpt_cond_chunk_len self.max_ref_len = max_ref_len self.sound_norm_refs = sound_norm_refs # Audio processing self.audio_config = audio_config # Constants and limits self.duration_const = duration_const self.char_limits = char_limits self.languages = languages def to_dict(self): """Convert config to dictionary""" config_dict = super().to_dict() config_dict["audio_config"] = asdict(self.audio_config) return config_dict @classmethod def from_dict(cls, config_dict): """Create config from dictionary""" audio_config = XTTSAudioConfig(**config_dict.pop("audio_config", {})) return cls(audio_config=audio_config, **config_dict) def update_with_tokenizer(self, tokenizer=None): """Update configuration values based on tokenizer""" if tokenizer is not None: self.gpt_number_text_tokens = tokenizer.get_vocab_size() self.gpt_start_text_token = tokenizer.bos_token_id self.gpt_stop_text_token = tokenizer.eos_token_id