Atharvgarg
commited on
Commit
•
65407a3
1
Parent(s):
3c5898f
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- summarisation
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- rouge
|
8 |
+
model-index:
|
9 |
+
- name: distilbart-xsum-6-6-finetuned-bbc-news-on-extractive
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# distilbart-xsum-6-6-finetuned-bbc-news-on-extractive
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [sshleifer/distilbart-xsum-6-6](https://huggingface.co/sshleifer/distilbart-xsum-6-6) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.5869
|
21 |
+
- Rouge1: 39.4885
|
22 |
+
- Rouge2: 31.7487
|
23 |
+
- Rougel: 31.9013
|
24 |
+
- Rougelsum: 34.0825
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5.6e-05
|
44 |
+
- train_batch_size: 4
|
45 |
+
- eval_batch_size: 4
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 4
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
|
55 |
+
| 1.4649 | 1.0 | 445 | 1.5047 | 39.1053 | 31.6651 | 32.3242 | 33.9332 |
|
56 |
+
| 1.2224 | 2.0 | 890 | 1.4986 | 39.4115 | 31.7894 | 32.1057 | 34.0454 |
|
57 |
+
| 1.0099 | 3.0 | 1335 | 1.5322 | 39.5936 | 31.9984 | 32.2283 | 34.1798 |
|
58 |
+
| 0.8687 | 4.0 | 1780 | 1.5869 | 39.4885 | 31.7487 | 31.9013 | 34.0825 |
|
59 |
+
|
60 |
+
|
61 |
+
### Framework versions
|
62 |
+
|
63 |
+
- Transformers 4.21.2
|
64 |
+
- Pytorch 1.12.1+cu113
|
65 |
+
- Datasets 2.4.0
|
66 |
+
- Tokenizers 0.12.1
|