File size: 1,381 Bytes
d0d5fb1 aefcae6 d0d5fb1 aefcae6 7ac0e4d dc405e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.4.0.dev0
### 额外说明
这是基于LLaMA使用QLoRA技术微调的一个适配器模型
```
# imports
from peft import PeftModel
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
import torch
# create tokenizer
base_model = "huggyllama/llama-7b"
tokenizer = LlamaTokenizer.from_pretrained(base_model)
# base model
model = LlamaForCausalLM.from_pretrained(
base_model,
torch_dtype=torch.float16,
device_map="auto",
)
# LORA PEFT adapters
adapter_model = "AtomGradient/adjust_llama-7b"
model = PeftModel.from_pretrained(
model,
adapter_model,
#torch_dtype=torch.float16,
)
model.eval()
# prompt
prompt = "美国的总统是谁"
inputs = tokenizer(prompt, return_tensors="pt")
# Generate
generate_ids = model.generate(**inputs, max_new_tokens=30)
print(tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0])
```
|