merges_d / mergekit /moe /deepseek.py
Auber's picture
Upload folder using huggingface_hub
83a9b56 verified
raw
history blame
7.82 kB
# Copyright (C) 2024 Charles O. Goddard
#
# This software is free software: you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This software is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see http://www.gnu.org/licenses/.
import json
import logging
import os
from typing import Dict, List, Optional
import torch
import tqdm
import transformers
from mergekit.architecture import get_architecture_info
from mergekit.moe.arch import MoEOutputArchitecture
from mergekit.moe.common import initialize_io, noise_and_scale, select_dtype
from mergekit.moe.config import MoEMergeConfig
from mergekit.options import MergeOptions
class DeepseekMoE(MoEOutputArchitecture):
def name(self) -> str:
return "DeepSeek MoE"
def supports_config(
self,
config: MoEMergeConfig,
explain: bool = False,
trust_remote_code: bool = False,
) -> bool:
if config.shared_experts:
if len(config.shared_experts) > 1:
if explain:
logging.warning(
"DeepSeek MoE merge does not support more than one shared expert"
)
return False
if (
config.shared_experts[0].positive_prompts
or config.shared_experts[0].negative_prompts
):
if explain:
logging.warning(
"DeepSeek MoE merge does not support gating shared experts"
)
return False
model_types = []
for model_ref in (
[config.base_model]
+ [e.source_model for e in config.experts]
+ [e.source_model for e in (config.shared_experts or [])]
):
model_cfg = model_ref.config(trust_remote_code=trust_remote_code)
model_types.append(model_cfg.model_type)
if len(set(model_types)) != 1:
if explain:
logging.warning(
"Deepseek MoE requires all input models to have the same architecture"
)
return False
if model_types[0] not in ("llama", "mistral"):
if explain:
logging.warning(
"Deepseek MoE requires all input models to be Llama or Mistral models"
)
return False
return True
def _generate_config(
self,
base_config: transformers.PretrainedConfig,
num_experts: int,
shared_experts: Optional[int] = None,
experts_per_token: Optional[int] = None,
) -> Dict:
if shared_experts and shared_experts > 1:
raise NotImplementedError(
"Shared experts must be 0 or 1 for DeepSeek output"
)
res = base_config.to_dict()
res["architectures"] = ["DeepseekForCausalLM"]
res["model_type"] = "deepseek"
res["n_routed_experts"] = num_experts
res["n_shared_experts"] = shared_experts or None
res["num_experts_per_tok"] = experts_per_token or (1 if shared_experts else 2)
res["first_k_dense_replace"] = 0
res["moe_layer_freq"] = 1
res["scoring_func"] = "softmax"
res["norm_topk_prob"] = True
res["moe_intermediate_size"] = res["intermediate_size"]
res["auto_map"] = {
"AutoConfig": "deepseek-ai/deepseek-moe-16b-base--configuration_deepseek.DeepseekConfig",
"AutoModel": "deepseek-ai/deepseek-moe-16b-base--modeling_deepseek.DeepseekModel",
"AutoModelForCausalLM": "deepseek-ai/deepseek-moe-16b-base--modeling_deepseek.DeepseekForCausalLM",
}
return res
def write_model(
self,
out_path: str,
config: MoEMergeConfig,
merge_options: MergeOptions,
router_weights: List[torch.Tensor],
shared_router_weights: Optional[List[torch.Tensor]] = None,
):
base_model = config.base_model
base_cfg = base_model.config(trust_remote_code=merge_options.trust_remote_code)
out_dtype = select_dtype(config, base_cfg)
out_cfg = self._generate_config(
base_cfg,
len(config.experts),
len(config.shared_experts or []),
config.experts_per_token,
)
if out_dtype is not None:
out_cfg["torch_dtype"] = str(out_dtype).removeprefix("torch.")
with open(os.path.join(out_path, "config.json"), "w", encoding="utf-8") as f:
json.dump(out_cfg, f, indent=4)
shared_def = config.shared_experts[0] if config.shared_experts else None
loaders, base_loader, writer = initialize_io(config, out_path, merge_options)
shared_loader = loaders.get(shared_def.source_model) if shared_def else None
for weight_info in tqdm.tqdm(
get_architecture_info(base_cfg).all_weights(base_cfg),
desc="Weights",
):
tensor_name = weight_info.name
if ".mlp." in tensor_name:
for expert_idx, expert in enumerate(config.experts):
expert_name = tensor_name.replace(
".mlp.", f".mlp.experts.{expert_idx}."
)
expert_loader = loaders.get(expert.source_model)
tensor = expert_loader.get_tensor(
weight_info.name, aliases=weight_info.aliases
)
tensor = noise_and_scale(
tensor, expert, is_residual="down_proj" in tensor_name
)
writer.save_tensor(
expert_name,
tensor.to(dtype=out_dtype),
clone=merge_options.clone_tensors,
)
if shared_def is not None:
shared_tensor = shared_loader.get_tensor(
weight_info.name, aliases=weight_info.aliases
)
shared_tensor = noise_and_scale(
shared_tensor,
shared_def,
is_residual="down_proj" in tensor_name,
)
writer.save_tensor(
tensor_name.replace(".mlp.", ".mlp.shared_experts."),
shared_tensor.to(dtype=out_dtype),
clone=merge_options.clone_tensors,
)
else:
tensor = base_loader.get_tensor(
tensor_name, aliases=weight_info.aliases
)
writer.save_tensor(
tensor_name,
tensor.to(dtype=out_dtype),
clone=merge_options.clone_tensors,
)
for layer_idx, weight in enumerate(
tqdm.tqdm(router_weights, desc="Router weights")
):
writer.save_tensor(
f"model.layers.{layer_idx}.mlp.gate.weight",
weight.to(dtype=out_dtype).contiguous(),
clone=merge_options.clone_tensors,
)
writer.finalize()