Augusto777's picture
End of training
aab4244 verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: beit-base-patch16-224-OT-3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8709677419354839

beit-base-patch16-224-OT-3

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3932
  • Accuracy: 0.8710

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.91 5 1.3788 0.5
1.3775 2.0 11 1.3397 0.5161
1.3775 2.91 16 1.2780 0.5161
1.2993 4.0 22 1.1642 0.6774
1.2993 4.91 27 1.0752 0.7097
1.1713 6.0 33 0.9749 0.7258
1.1713 6.91 38 0.8666 0.7581
0.9956 8.0 44 0.7634 0.8065
0.9956 8.91 49 0.6863 0.8226
0.845 10.0 55 0.6005 0.8226
0.7145 10.91 60 0.5364 0.8387
0.7145 12.0 66 0.5585 0.8065
0.5907 12.91 71 0.4962 0.7742
0.5907 14.0 77 0.5070 0.7581
0.5531 14.91 82 0.4648 0.8226
0.5531 16.0 88 0.4812 0.7581
0.4878 16.91 93 0.4281 0.8226
0.4878 18.0 99 0.4796 0.7419
0.4583 18.91 104 0.3913 0.8226
0.4546 20.0 110 0.4085 0.7742
0.4546 20.91 115 0.4016 0.8387
0.4118 22.0 121 0.4125 0.8226
0.4118 22.91 126 0.4282 0.8226
0.3939 24.0 132 0.4869 0.7742
0.3939 24.91 137 0.3723 0.8548
0.4138 26.0 143 0.4032 0.8065
0.4138 26.91 148 0.4397 0.8065
0.3599 28.0 154 0.3714 0.8548
0.3599 28.91 159 0.3800 0.8548
0.3629 30.0 165 0.4158 0.8065
0.336 30.91 170 0.4100 0.8226
0.336 32.0 176 0.4001 0.8387
0.3306 32.91 181 0.3925 0.8548
0.3306 34.0 187 0.3932 0.8710
0.3319 34.91 192 0.3942 0.8710
0.3319 36.0 198 0.3883 0.8710
0.3324 36.36 200 0.3886 0.8710

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0