Augusto777
commited on
Commit
•
9b3e9c4
1
Parent(s):
be4b2c8
Update README.md
Browse files
README.md
CHANGED
@@ -1,87 +1,87 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
base_model: google/vit-base-patch16-224
|
4 |
-
tags:
|
5 |
-
- generated_from_trainer
|
6 |
-
datasets:
|
7 |
-
- imagefolder
|
8 |
-
metrics:
|
9 |
-
- accuracy
|
10 |
-
model-index:
|
11 |
-
- name: vit-base-patch16-224-U8-10b
|
12 |
-
results:
|
13 |
-
- task:
|
14 |
-
name: Image Classification
|
15 |
-
type: image-classification
|
16 |
-
dataset:
|
17 |
-
name: imagefolder
|
18 |
-
type: imagefolder
|
19 |
-
config: default
|
20 |
-
split: validation
|
21 |
-
args: default
|
22 |
-
metrics:
|
23 |
-
- name: Accuracy
|
24 |
-
type: accuracy
|
25 |
-
value: 0.8627450980392157
|
26 |
-
---
|
27 |
-
|
28 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
-
should probably proofread and complete it, then remove this comment. -->
|
30 |
-
|
31 |
-
# vit-base-patch16-224-U8-10b
|
32 |
-
|
33 |
-
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
34 |
-
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.5349
|
36 |
-
- Accuracy: 0.8627
|
37 |
-
|
38 |
-
## Model description
|
39 |
-
|
40 |
-
More information needed
|
41 |
-
|
42 |
-
## Intended uses & limitations
|
43 |
-
|
44 |
-
More information needed
|
45 |
-
|
46 |
-
## Training and evaluation data
|
47 |
-
|
48 |
-
More information needed
|
49 |
-
|
50 |
-
## Training procedure
|
51 |
-
|
52 |
-
### Training hyperparameters
|
53 |
-
|
54 |
-
The following hyperparameters were used during training:
|
55 |
-
- learning_rate: 5.5e-05
|
56 |
-
- train_batch_size: 32
|
57 |
-
- eval_batch_size: 32
|
58 |
-
- seed: 42
|
59 |
-
- gradient_accumulation_steps: 4
|
60 |
-
- total_train_batch_size: 128
|
61 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
-
- lr_scheduler_type: linear
|
63 |
-
- lr_scheduler_warmup_ratio: 0.05
|
64 |
-
- num_epochs: 10
|
65 |
-
|
66 |
-
### Training results
|
67 |
-
|
68 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
-
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
-
| 1.2473 | 1.0 | 20 | 1.1671 | 0.5882 |
|
71 |
-
| 0.955 | 2.0 | 40 | 0.9392 | 0.6471 |
|
72 |
-
| 0.735 | 3.0 | 60 | 0.7247 | 0.6863 |
|
73 |
-
| 0.5341 | 4.0 | 80 | 0.5977 | 0.8235 |
|
74 |
-
| 0.3864 | 5.0 | 100 | 0.6556 | 0.7451 |
|
75 |
-
| 0.2837 | 6.0 | 120 | 0.6781 | 0.7255 |
|
76 |
-
| 0.2332 | 7.0 | 140 | 0.5419 | 0.8431 |
|
77 |
-
| 0.1974 | 8.0 | 160 | 0.5349 | 0.8627 |
|
78 |
-
| 0.1857 | 9.0 | 180 | 0.5606 | 0.8235 |
|
79 |
-
| 0.1907 | 10.0 | 200 | 0.4875 | 0.8431 |
|
80 |
-
|
81 |
-
|
82 |
-
### Framework versions
|
83 |
-
|
84 |
-
- Transformers 4.36.2
|
85 |
-
- Pytorch 2.1.2+cu118
|
86 |
-
- Datasets 2.16.1
|
87 |
-
- Tokenizers 0.15.0
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/vit-base-patch16-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: vit-base-patch16-224-U8-10b
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: validation
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.8627450980392157
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# vit-base-patch16-224-U8-10b
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset "dmae-ve-U8".
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.5349
|
36 |
+
- Accuracy: 0.8627
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5.5e-05
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 128
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.05
|
64 |
+
- num_epochs: 10
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 1.2473 | 1.0 | 20 | 1.1671 | 0.5882 |
|
71 |
+
| 0.955 | 2.0 | 40 | 0.9392 | 0.6471 |
|
72 |
+
| 0.735 | 3.0 | 60 | 0.7247 | 0.6863 |
|
73 |
+
| 0.5341 | 4.0 | 80 | 0.5977 | 0.8235 |
|
74 |
+
| 0.3864 | 5.0 | 100 | 0.6556 | 0.7451 |
|
75 |
+
| 0.2837 | 6.0 | 120 | 0.6781 | 0.7255 |
|
76 |
+
| 0.2332 | 7.0 | 140 | 0.5419 | 0.8431 |
|
77 |
+
| 0.1974 | 8.0 | 160 | 0.5349 | 0.8627 |
|
78 |
+
| 0.1857 | 9.0 | 180 | 0.5606 | 0.8235 |
|
79 |
+
| 0.1907 | 10.0 | 200 | 0.4875 | 0.8431 |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.36.2
|
85 |
+
- Pytorch 2.1.2+cu118
|
86 |
+
- Datasets 2.16.1
|
87 |
+
- Tokenizers 0.15.0
|