Augusto777 commited on
Commit
9b3e9c4
1 Parent(s): be4b2c8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -87
README.md CHANGED
@@ -1,87 +1,87 @@
1
- ---
2
- license: apache-2.0
3
- base_model: google/vit-base-patch16-224
4
- tags:
5
- - generated_from_trainer
6
- datasets:
7
- - imagefolder
8
- metrics:
9
- - accuracy
10
- model-index:
11
- - name: vit-base-patch16-224-U8-10b
12
- results:
13
- - task:
14
- name: Image Classification
15
- type: image-classification
16
- dataset:
17
- name: imagefolder
18
- type: imagefolder
19
- config: default
20
- split: validation
21
- args: default
22
- metrics:
23
- - name: Accuracy
24
- type: accuracy
25
- value: 0.8627450980392157
26
- ---
27
-
28
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
- should probably proofread and complete it, then remove this comment. -->
30
-
31
- # vit-base-patch16-224-U8-10b
32
-
33
- This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
34
- It achieves the following results on the evaluation set:
35
- - Loss: 0.5349
36
- - Accuracy: 0.8627
37
-
38
- ## Model description
39
-
40
- More information needed
41
-
42
- ## Intended uses & limitations
43
-
44
- More information needed
45
-
46
- ## Training and evaluation data
47
-
48
- More information needed
49
-
50
- ## Training procedure
51
-
52
- ### Training hyperparameters
53
-
54
- The following hyperparameters were used during training:
55
- - learning_rate: 5.5e-05
56
- - train_batch_size: 32
57
- - eval_batch_size: 32
58
- - seed: 42
59
- - gradient_accumulation_steps: 4
60
- - total_train_batch_size: 128
61
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
- - lr_scheduler_type: linear
63
- - lr_scheduler_warmup_ratio: 0.05
64
- - num_epochs: 10
65
-
66
- ### Training results
67
-
68
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
- | 1.2473 | 1.0 | 20 | 1.1671 | 0.5882 |
71
- | 0.955 | 2.0 | 40 | 0.9392 | 0.6471 |
72
- | 0.735 | 3.0 | 60 | 0.7247 | 0.6863 |
73
- | 0.5341 | 4.0 | 80 | 0.5977 | 0.8235 |
74
- | 0.3864 | 5.0 | 100 | 0.6556 | 0.7451 |
75
- | 0.2837 | 6.0 | 120 | 0.6781 | 0.7255 |
76
- | 0.2332 | 7.0 | 140 | 0.5419 | 0.8431 |
77
- | 0.1974 | 8.0 | 160 | 0.5349 | 0.8627 |
78
- | 0.1857 | 9.0 | 180 | 0.5606 | 0.8235 |
79
- | 0.1907 | 10.0 | 200 | 0.4875 | 0.8431 |
80
-
81
-
82
- ### Framework versions
83
-
84
- - Transformers 4.36.2
85
- - Pytorch 2.1.2+cu118
86
- - Datasets 2.16.1
87
- - Tokenizers 0.15.0
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: vit-base-patch16-224-U8-10b
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: validation
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8627450980392157
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # vit-base-patch16-224-U8-10b
32
+
33
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset "dmae-ve-U8".
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.5349
36
+ - Accuracy: 0.8627
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5.5e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 128
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.05
64
+ - num_epochs: 10
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 1.2473 | 1.0 | 20 | 1.1671 | 0.5882 |
71
+ | 0.955 | 2.0 | 40 | 0.9392 | 0.6471 |
72
+ | 0.735 | 3.0 | 60 | 0.7247 | 0.6863 |
73
+ | 0.5341 | 4.0 | 80 | 0.5977 | 0.8235 |
74
+ | 0.3864 | 5.0 | 100 | 0.6556 | 0.7451 |
75
+ | 0.2837 | 6.0 | 120 | 0.6781 | 0.7255 |
76
+ | 0.2332 | 7.0 | 140 | 0.5419 | 0.8431 |
77
+ | 0.1974 | 8.0 | 160 | 0.5349 | 0.8627 |
78
+ | 0.1857 | 9.0 | 180 | 0.5606 | 0.8235 |
79
+ | 0.1907 | 10.0 | 200 | 0.4875 | 0.8431 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.36.2
85
+ - Pytorch 2.1.2+cu118
86
+ - Datasets 2.16.1
87
+ - Tokenizers 0.15.0