Augusto777 commited on
Commit
de092c0
1 Parent(s): cc47007

Model save

Browse files
README.md ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: vit-base-patch16-224-ve-U13b-80RX1
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: validation
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.10869565217391304
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # vit-base-patch16-224-ve-U13b-80RX1
32
+
33
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 25872499347325405328572416.0000
36
+ - Accuracy: 0.1087
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5.5e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.05
62
+ - num_epochs: 40
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------------------------:|:-----:|:----:|:-------------------------------:|:--------:|
68
+ | 21407918734188223332876288.0000 | 1.0 | 103 | 25872499347325405328572416.0000 | 0.1087 |
69
+ | 19230841377306649816989696.0000 | 2.0 | 206 | 25872499347325405328572416.0000 | 0.1087 |
70
+ | 22859301179210058793222144.0000 | 3.0 | 309 | 25872499347325405328572416.0000 | 0.1087 |
71
+ | 23584992401720978670878720.0000 | 4.0 | 412 | 25872499347325405328572416.0000 | 0.1087 |
72
+ | 24310687313580712431452160.0000 | 5.0 | 515 | 25872499347325405328572416.0000 | 0.1087 |
73
+ | 24310687313580712431452160.0000 | 6.0 | 618 | 25872499347325405328572416.0000 | 0.1087 |
74
+ | 22496457412629005795852288.0000 | 7.0 | 721 | 25872499347325405328572416.0000 | 0.1087 |
75
+ | 21045071278258356452589568.0000 | 8.0 | 824 | 25872499347325405328572416.0000 | 0.1087 |
76
+ | 21045071278258356452589568.0000 | 9.0 | 927 | 25872499347325405328572416.0000 | 0.1087 |
77
+ | 23343098402008016231596032.0000 | 10.0 | 1030 | 25872499347325405328572416.0000 | 0.1087 |
78
+ | 23222148635139925673508864.0000 | 11.0 | 1133 | 25872499347325405328572416.0000 | 0.1087 |
79
+ | 23222150479814334762450944.0000 | 12.0 | 1236 | 25872499347325405328572416.0000 | 0.1087 |
80
+ | 21407918734188223332876288.0000 | 13.0 | 1339 | 25872499347325405328572416.0000 | 0.1087 |
81
+ | 21407916889513814243934208.0000 | 14.0 | 1442 | 25872499347325405328572416.0000 | 0.1087 |
82
+ | 21770764345443681124220928.0000 | 15.0 | 1545 | 25872499347325405328572416.0000 | 0.1087 |
83
+ | 22496455567954601001877504.0000 | 16.0 | 1648 | 25872499347325405328572416.0000 | 0.1087 |
84
+ | 22859303023884467882164224.0000 | 17.0 | 1751 | 25872499347325405328572416.0000 | 0.1087 |
85
+ | 19593686988562107608334336.0000 | 18.0 | 1854 | 25872499347325405328572416.0000 | 0.1087 |
86
+ | 22859304868558872676139008.0000 | 19.0 | 1957 | 25872499347325405328572416.0000 | 0.1087 |
87
+ | 21528866656381904802021376.0000 | 20.0 | 2060 | 25872499347325405328572416.0000 | 0.1087 |
88
+ | 17053764020425078448586752.0000 | 21.0 | 2163 | 25872499347325405328572416.0000 | 0.1087 |
89
+ | 22133609956699138915565568.0000 | 22.0 | 2266 | 25872499347325405328572416.0000 | 0.1087 |
90
+ | 21045074967607170335506432.0000 | 23.0 | 2369 | 25872499347325405328572416.0000 | 0.1087 |
91
+ | 21407915044839405154992128.0000 | 24.0 | 2472 | 25872499347325405328572416.0000 | 0.1087 |
92
+ | 21770762500769272035278848.0000 | 25.0 | 2575 | 25872499347325405328572416.0000 | 0.1087 |
93
+ | 23947841702325254640107520.0000 | 26.0 | 2678 | 25872499347325405328572416.0000 | 0.1087 |
94
+ | 21045071278258356452589568.0000 | 27.0 | 2781 | 25872499347325405328572416.0000 | 0.1087 |
95
+ | 21770762500769272035278848.0000 | 28.0 | 2884 | 25872499347325405328572416.0000 | 0.1087 |
96
+ | 21407918734188223332876288.0000 | 29.0 | 2987 | 25872499347325405328572416.0000 | 0.1087 |
97
+ | 21528866656381904802021376.0000 | 30.0 | 3090 | 25872499347325405328572416.0000 | 0.1087 |
98
+ | 21045073122932761246564352.0000 | 31.0 | 3193 | 25872499347325405328572416.0000 | 0.1087 |
99
+ | 23584994246395387759820800.0000 | 32.0 | 3296 | 25872499347325405328572416.0000 | 0.1087 |
100
+ | 21045069433583947363647488.0000 | 33.0 | 3399 | 25872499347325405328572416.0000 | 0.1087 |
101
+ | 22859304868558872676139008.0000 | 34.0 | 3502 | 25872499347325405328572416.0000 | 0.1087 |
102
+ | 21407920578862628126851072.0000 | 35.0 | 3605 | 25872499347325405328572416.0000 | 0.1087 |
103
+ | 21045074967607170335506432.0000 | 36.0 | 3708 | 25872499347325405328572416.0000 | 0.1087 |
104
+ | 21770764345443681124220928.0000 | 37.0 | 3811 | 25872499347325405328572416.0000 | 0.1087 |
105
+ | 22496457412629005795852288.0000 | 38.0 | 3914 | 25872499347325405328572416.0000 | 0.1087 |
106
+ | 21407918734188223332876288.0000 | 39.0 | 4017 | 25872499347325405328572416.0000 | 0.1087 |
107
+ | 23222148635139925673508864.0000 | 40.0 | 4120 | 25872499347325405328572416.0000 | 0.1087 |
108
+
109
+
110
+ ### Framework versions
111
+
112
+ - Transformers 4.36.2
113
+ - Pytorch 2.1.2+cu118
114
+ - Datasets 2.16.1
115
+ - Tokenizers 0.15.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b342ecb17aa7da799b24246881403a80ac3614271392e15dfe05364607df7eb6
3
  size 343230128
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:842101c3c5ce21d106171d01b9ba28496d8ee84088848bf1b6401802b5c78018
3
  size 343230128
runs/Jun23_15-16-23_DESKTOP-SKBE9FB/events.out.tfevents.1719177385.DESKTOP-SKBE9FB.16740.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7d4fe23293d1c762400fa8e970677665e58440a2be8300840a411fd4ef6fd2cf
3
- size 76235
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7315fb37d0dfa873b9125aa2f6a490bd38633a96e70a02ec44e47b04b3ba9ef
3
+ size 82425