--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-ve-U13b-80RX1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8043478260869565 --- # vit-base-patch16-224-ve-U13b-80RX1 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 25847261397527471458109882368.0000 - Accuracy: 0.8043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:----------------------------------:|:-----:|:----:|:----------------------------------:|:--------:| | 62421131753362939742087282688.0000 | 0.99 | 51 | 25847261397527471458109882368.0000 | 0.3696 | | 68366009359745128248184406016.0000 | 2.0 | 103 | 25847261397527471458109882368.0000 | 0.5435 | | 56476265480660303086264254464.0000 | 2.99 | 154 | 25847261397527471458109882368.0000 | 0.7174 | | 59448700505958211923205947392.0000 | 4.0 | 206 | 25847261397527471458109882368.0000 | 0.7391 | | 57962481104362666995704922112.0000 | 4.99 | 257 | 25847261397527471458109882368.0000 | 0.7391 | | 56476269258553484104324612096.0000 | 6.0 | 309 | 25847261397527471458109882368.0000 | 0.7174 | | 60934916129660575832646615040.0000 | 6.99 | 360 | 25847261397527471458109882368.0000 | 0.8043 | | 69852217427661121325411336192.0000 | 8.0 | 412 | 25847261397527471458109882368.0000 | 0.7174 | | 59448704283851401737359327232.0000 | 8.99 | 463 | 25847261397527471458109882368.0000 | 0.7609 | | 81741965084639127505391845376.0000 | 10.0 | 515 | 25847261397527471458109882368.0000 | 0.7609 | | 57962484882255848013765279744.0000 | 10.99 | 566 | 25847261397527471458109882368.0000 | 0.7609 | | 57962473548576287367398162432.0000 | 12.0 | 618 | 25847261397527471458109882368.0000 | 0.8043 | | 57962484882255848013765279744.0000 | 12.99 | 669 | 25847261397527471458109882368.0000 | 0.7391 | | 60934916129660575832646615040.0000 | 14.0 | 721 | 25847261397527471458109882368.0000 | 0.8043 | | 57962477326469477181551542272.0000 | 14.99 | 772 | 25847261397527471458109882368.0000 | 0.7826 | | 50531391652171295598227488768.0000 | 16.0 | 824 | 25847261397527471458109882368.0000 | 0.7826 | | 57962481104362666995704922112.0000 | 16.99 | 875 | 25847261397527471458109882368.0000 | 0.7174 | | 47558960404766567779346153472.0000 | 18.0 | 927 | 25847261397527471458109882368.0000 | 0.7174 | | 68366001803958757415970668544.0000 | 18.99 | 978 | 25847261397527471458109882368.0000 | 0.7826 | | 60439517218248428756995670016.0000 | 20.0 | 1030 | 25847261397527471458109882368.0000 | 0.7174 | | 75797095034043309831508459520.0000 | 20.99 | 1081 | 25847261397527471458109882368.0000 | 0.7391 | | 59448700505958211923205947392.0000 | 22.0 | 1133 | 25847261397527471458109882368.0000 | 0.7609 | | 63907354932851674483741687808.0000 | 22.99 | 1184 | 25847261397527471458109882368.0000 | 0.7609 | | 78769533837234408482603532288.0000 | 24.0 | 1236 | 25847261397527471458109882368.0000 | 0.7609 | | 66879786180256393506530000896.0000 | 24.99 | 1287 | 25847261397527471458109882368.0000 | 0.8043 | | 56476269258553484104324612096.0000 | 26.0 | 1339 | 25847261397527471458109882368.0000 | 0.7609 | | 66879786180256393506530000896.0000 | 26.99 | 1390 | 25847261397527471458109882368.0000 | 0.7609 | | 60934919907553756850706972672.0000 | 28.0 | 1442 | 25847261397527471458109882368.0000 | 0.7174 | | 54990046079064749362670206976.0000 | 28.99 | 1493 | 25847261397527471458109882368.0000 | 0.7174 | | 69852232539233862989838811136.0000 | 30.0 | 1545 | 25847261397527471458109882368.0000 | 0.7826 | | 71338440607149856067065741312.0000 | 30.99 | 1596 | 25847261397527471458109882368.0000 | 0.7609 | | 66879793736042764338743738368.0000 | 32.0 | 1648 | 25847261397527471458109882368.0000 | 0.7609 | | 44586525379468658942404460544.0000 | 32.99 | 1699 | 25847261397527471458109882368.0000 | 0.7391 | | 59448700505958211923205947392.0000 | 34.0 | 1751 | 25847261397527471458109882368.0000 | 0.7391 | | 63907347377065294855434928128.0000 | 34.99 | 1802 | 25847261397527471458109882368.0000 | 0.7391 | | 75797095034043309831508459520.0000 | 36.0 | 1854 | 25847261397527471458109882368.0000 | 0.7391 | | 62421135531256120760147640320.0000 | 36.99 | 1905 | 25847261397527471458109882368.0000 | 0.7174 | | 53503830455362394249322561536.0000 | 38.0 | 1957 | 25847261397527471458109882368.0000 | 0.7174 | | 56476265480660303086264254464.0000 | 38.99 | 2008 | 25847261397527471458109882368.0000 | 0.7174 | | 53503826677469204435169181696.0000 | 39.61 | 2040 | 25847261397527471458109882368.0000 | 0.7174 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0