Upload folder using huggingface_hub
Browse files- .gitignore +1 -0
- external/midas/.ipynb_checkpoints/api-checkpoint.py +164 -0
- external/midas/__init__.py +36 -0
- external/midas/api.py +172 -0
- external/midas/midas/__init__.py +0 -0
- external/midas/midas/base_model.py +16 -0
- external/midas/midas/blocks.py +342 -0
- external/midas/midas/dpt_depth.py +109 -0
- external/midas/midas/midas_net.py +76 -0
- external/midas/midas/midas_net_custom.py +128 -0
- external/midas/midas/transforms.py +234 -0
- external/midas/midas/vit.py +491 -0
- external/midas/utils.py +189 -0
- inference.py +69 -8
- internals/data/dataAccessor.py +1 -1
- internals/data/task.py +3 -0
- internals/pipelines/controlnets.py +40 -13
- internals/pipelines/remove_background.py +5 -0
- internals/pipelines/replace_background.py +36 -12
- internals/pipelines/upscaler.py +4 -3
- internals/util/image.py +21 -0
- internals/util/lora_style.py +40 -59
- pyproject.toml +2 -2
.gitignore
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
*.pyc
|
|
|
2 |
.ipynb_checkpoints █
|
3 |
env
|
4 |
test.py
|
|
|
1 |
*.pyc
|
2 |
+
.DS_Store
|
3 |
.ipynb_checkpoints █
|
4 |
env
|
5 |
test.py
|
external/midas/.ipynb_checkpoints/api-checkpoint.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# based on https://github.com/isl-org/MiDaS
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from torchvision.transforms import Compose
|
7 |
+
|
8 |
+
from .midas.dpt_depth import DPTDepthModel
|
9 |
+
from .midas.midas_net import MidasNet
|
10 |
+
from .midas.midas_net_custom import MidasNet_small
|
11 |
+
from .midas.transforms import Resize, NormalizeImage, PrepareForNet
|
12 |
+
from torchvision.datasets.utils import download_url
|
13 |
+
from pathlib import Path
|
14 |
+
|
15 |
+
ISL_PATHS = {
|
16 |
+
"dpt_large": "https://github.com/isl-org/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
|
17 |
+
"dpt_hybrid": "https://github.com/isl-org/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt",
|
18 |
+
"midas_v21": "",
|
19 |
+
"midas_v21_small": "",
|
20 |
+
}
|
21 |
+
|
22 |
+
|
23 |
+
def disabled_train(self, mode=True):
|
24 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
25 |
+
does not change anymore."""
|
26 |
+
return self
|
27 |
+
|
28 |
+
|
29 |
+
def load_midas_transform(model_type):
|
30 |
+
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
31 |
+
# load transform only
|
32 |
+
if model_type == "dpt_large": # DPT-Large
|
33 |
+
net_w, net_h = 384, 384
|
34 |
+
resize_mode = "minimal"
|
35 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
36 |
+
|
37 |
+
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
38 |
+
net_w, net_h = 384, 384
|
39 |
+
resize_mode = "minimal"
|
40 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
41 |
+
|
42 |
+
elif model_type == "midas_v21":
|
43 |
+
net_w, net_h = 384, 384
|
44 |
+
resize_mode = "upper_bound"
|
45 |
+
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
46 |
+
|
47 |
+
elif model_type == "midas_v21_small":
|
48 |
+
net_w, net_h = 256, 256
|
49 |
+
resize_mode = "upper_bound"
|
50 |
+
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
51 |
+
|
52 |
+
else:
|
53 |
+
assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
|
54 |
+
|
55 |
+
transform = Compose(
|
56 |
+
[
|
57 |
+
Resize(
|
58 |
+
net_w,
|
59 |
+
net_h,
|
60 |
+
resize_target=None,
|
61 |
+
keep_aspect_ratio=True,
|
62 |
+
ensure_multiple_of=32,
|
63 |
+
resize_method=resize_mode,
|
64 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
65 |
+
),
|
66 |
+
normalization,
|
67 |
+
PrepareForNet(),
|
68 |
+
]
|
69 |
+
)
|
70 |
+
|
71 |
+
return transform
|
72 |
+
|
73 |
+
|
74 |
+
def load_model(model_type):
|
75 |
+
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
76 |
+
# load network
|
77 |
+
model_path = ISL_PATHS[model_type]
|
78 |
+
download_url(model_path, "Intel-isl")
|
79 |
+
model_path = f"Intel-isl/{model_path.split('/')[-1]}"
|
80 |
+
if model_type == "dpt_large": # DPT-Large
|
81 |
+
model = DPTDepthModel(
|
82 |
+
path=model_path,
|
83 |
+
backbone="vitl16_384",
|
84 |
+
non_negative=True,
|
85 |
+
)
|
86 |
+
net_w, net_h = 384, 384
|
87 |
+
resize_mode = "minimal"
|
88 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
89 |
+
|
90 |
+
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
91 |
+
model = DPTDepthModel(
|
92 |
+
path=model_path,
|
93 |
+
backbone="vitb_rn50_384",
|
94 |
+
non_negative=True,
|
95 |
+
)
|
96 |
+
net_w, net_h = 384, 384
|
97 |
+
resize_mode = "minimal"
|
98 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
99 |
+
|
100 |
+
elif model_type == "midas_v21":
|
101 |
+
model = MidasNet(model_path, non_negative=True)
|
102 |
+
net_w, net_h = 384, 384
|
103 |
+
resize_mode = "upper_bound"
|
104 |
+
normalization = NormalizeImage(
|
105 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
106 |
+
)
|
107 |
+
|
108 |
+
elif model_type == "midas_v21_small":
|
109 |
+
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
|
110 |
+
non_negative=True, blocks={'expand': True})
|
111 |
+
net_w, net_h = 256, 256
|
112 |
+
resize_mode = "upper_bound"
|
113 |
+
normalization = NormalizeImage(
|
114 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
115 |
+
)
|
116 |
+
|
117 |
+
else:
|
118 |
+
print(f"model_type '{model_type}' not implemented, use: --model_type large")
|
119 |
+
assert False
|
120 |
+
|
121 |
+
transform = Compose(
|
122 |
+
[
|
123 |
+
Resize(
|
124 |
+
net_w,
|
125 |
+
net_h,
|
126 |
+
resize_target=None,
|
127 |
+
keep_aspect_ratio=True,
|
128 |
+
ensure_multiple_of=32,
|
129 |
+
resize_method=resize_mode,
|
130 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
131 |
+
),
|
132 |
+
normalization,
|
133 |
+
PrepareForNet(),
|
134 |
+
]
|
135 |
+
)
|
136 |
+
|
137 |
+
return model.eval(), transform
|
138 |
+
|
139 |
+
|
140 |
+
class MiDaSInference(nn.Module):
|
141 |
+
MODEL_TYPES_TORCH_HUB = [
|
142 |
+
"DPT_Large",
|
143 |
+
"DPT_Hybrid",
|
144 |
+
"MiDaS_small"
|
145 |
+
]
|
146 |
+
MODEL_TYPES_ISL = [
|
147 |
+
"dpt_large",
|
148 |
+
"dpt_hybrid",
|
149 |
+
"midas_v21",
|
150 |
+
"midas_v21_small",
|
151 |
+
]
|
152 |
+
|
153 |
+
def __init__(self, model_type):
|
154 |
+
super().__init__()
|
155 |
+
assert (model_type in self.MODEL_TYPES_ISL)
|
156 |
+
model, _ = load_model(model_type)
|
157 |
+
self.model = model
|
158 |
+
self.model.train = disabled_train
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
with torch.no_grad():
|
162 |
+
prediction = self.model(x)
|
163 |
+
return prediction
|
164 |
+
|
external/midas/__init__.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from einops import rearrange
|
6 |
+
from .api import MiDaSInference
|
7 |
+
|
8 |
+
model = MiDaSInference(model_type="dpt_hybrid").cuda()
|
9 |
+
|
10 |
+
|
11 |
+
def apply_midas(input_image, a=np.pi * 2.0, bg_th=0.1):
|
12 |
+
assert input_image.ndim == 3
|
13 |
+
image_depth = input_image
|
14 |
+
with torch.no_grad():
|
15 |
+
image_depth = torch.from_numpy(image_depth).float().cuda()
|
16 |
+
image_depth = image_depth / 127.5 - 1.0
|
17 |
+
image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
|
18 |
+
depth = model(image_depth)[0]
|
19 |
+
|
20 |
+
depth_pt = depth.clone()
|
21 |
+
depth_pt -= torch.min(depth_pt)
|
22 |
+
depth_pt /= torch.max(depth_pt)
|
23 |
+
depth_pt = depth_pt.cpu().numpy()
|
24 |
+
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)
|
25 |
+
|
26 |
+
depth_np = depth.cpu().numpy()
|
27 |
+
x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3)
|
28 |
+
y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3)
|
29 |
+
z = np.ones_like(x) * a
|
30 |
+
x[depth_pt < bg_th] = 0
|
31 |
+
y[depth_pt < bg_th] = 0
|
32 |
+
normal = np.stack([x, y, z], axis=2)
|
33 |
+
normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
|
34 |
+
normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
|
35 |
+
|
36 |
+
return depth_image, normal_image
|
external/midas/api.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# based on https://github.com/isl-org/MiDaS
|
2 |
+
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from torchvision.datasets.utils import download_url
|
9 |
+
from torchvision.transforms import Compose
|
10 |
+
|
11 |
+
from .midas.dpt_depth import DPTDepthModel
|
12 |
+
from .midas.midas_net import MidasNet
|
13 |
+
from .midas.midas_net_custom import MidasNet_small
|
14 |
+
from .midas.transforms import NormalizeImage, PrepareForNet, Resize
|
15 |
+
|
16 |
+
ISL_PATHS = {
|
17 |
+
"dpt_large": "https://github.com/isl-org/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
|
18 |
+
"dpt_hybrid": "https://github.com/isl-org/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt",
|
19 |
+
"midas_v21": "",
|
20 |
+
"midas_v21_small": "",
|
21 |
+
}
|
22 |
+
|
23 |
+
|
24 |
+
def disabled_train(self, mode=True):
|
25 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
26 |
+
does not change anymore."""
|
27 |
+
return self
|
28 |
+
|
29 |
+
|
30 |
+
def load_midas_transform(model_type):
|
31 |
+
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
32 |
+
# load transform only
|
33 |
+
if model_type == "dpt_large": # DPT-Large
|
34 |
+
net_w, net_h = 384, 384
|
35 |
+
resize_mode = "minimal"
|
36 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
37 |
+
|
38 |
+
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
39 |
+
net_w, net_h = 384, 384
|
40 |
+
resize_mode = "minimal"
|
41 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
42 |
+
|
43 |
+
elif model_type == "midas_v21":
|
44 |
+
net_w, net_h = 384, 384
|
45 |
+
resize_mode = "upper_bound"
|
46 |
+
normalization = NormalizeImage(
|
47 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
48 |
+
)
|
49 |
+
|
50 |
+
elif model_type == "midas_v21_small":
|
51 |
+
net_w, net_h = 256, 256
|
52 |
+
resize_mode = "upper_bound"
|
53 |
+
normalization = NormalizeImage(
|
54 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
55 |
+
)
|
56 |
+
|
57 |
+
else:
|
58 |
+
assert (
|
59 |
+
False
|
60 |
+
), f"model_type '{model_type}' not implemented, use: --model_type large"
|
61 |
+
|
62 |
+
transform = Compose(
|
63 |
+
[
|
64 |
+
Resize(
|
65 |
+
net_w,
|
66 |
+
net_h,
|
67 |
+
resize_target=None,
|
68 |
+
keep_aspect_ratio=True,
|
69 |
+
ensure_multiple_of=32,
|
70 |
+
resize_method=resize_mode,
|
71 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
72 |
+
),
|
73 |
+
normalization,
|
74 |
+
PrepareForNet(),
|
75 |
+
]
|
76 |
+
)
|
77 |
+
|
78 |
+
return transform
|
79 |
+
|
80 |
+
|
81 |
+
def load_model(model_type):
|
82 |
+
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
83 |
+
# load network
|
84 |
+
model_path = ISL_PATHS[model_type]
|
85 |
+
download_url(model_path, "~/.cache/Intel-isl")
|
86 |
+
model_path = f"{Path.home()}/.cache/Intel-isl/{model_path.split('/')[-1]}"
|
87 |
+
if model_type == "dpt_large": # DPT-Large
|
88 |
+
model = DPTDepthModel(
|
89 |
+
path=model_path,
|
90 |
+
backbone="vitl16_384",
|
91 |
+
non_negative=True,
|
92 |
+
)
|
93 |
+
net_w, net_h = 384, 384
|
94 |
+
resize_mode = "minimal"
|
95 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
96 |
+
|
97 |
+
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
98 |
+
model = DPTDepthModel(
|
99 |
+
path=model_path,
|
100 |
+
backbone="vitb_rn50_384",
|
101 |
+
non_negative=True,
|
102 |
+
)
|
103 |
+
net_w, net_h = 384, 384
|
104 |
+
resize_mode = "minimal"
|
105 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
106 |
+
|
107 |
+
elif model_type == "midas_v21":
|
108 |
+
model = MidasNet(model_path, non_negative=True)
|
109 |
+
net_w, net_h = 384, 384
|
110 |
+
resize_mode = "upper_bound"
|
111 |
+
normalization = NormalizeImage(
|
112 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
113 |
+
)
|
114 |
+
|
115 |
+
elif model_type == "midas_v21_small":
|
116 |
+
model = MidasNet_small(
|
117 |
+
model_path,
|
118 |
+
features=64,
|
119 |
+
backbone="efficientnet_lite3",
|
120 |
+
exportable=True,
|
121 |
+
non_negative=True,
|
122 |
+
blocks={"expand": True},
|
123 |
+
)
|
124 |
+
net_w, net_h = 256, 256
|
125 |
+
resize_mode = "upper_bound"
|
126 |
+
normalization = NormalizeImage(
|
127 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
128 |
+
)
|
129 |
+
|
130 |
+
else:
|
131 |
+
print(f"model_type '{model_type}' not implemented, use: --model_type large")
|
132 |
+
assert False
|
133 |
+
|
134 |
+
transform = Compose(
|
135 |
+
[
|
136 |
+
Resize(
|
137 |
+
net_w,
|
138 |
+
net_h,
|
139 |
+
resize_target=None,
|
140 |
+
keep_aspect_ratio=True,
|
141 |
+
ensure_multiple_of=32,
|
142 |
+
resize_method=resize_mode,
|
143 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
144 |
+
),
|
145 |
+
normalization,
|
146 |
+
PrepareForNet(),
|
147 |
+
]
|
148 |
+
)
|
149 |
+
|
150 |
+
return model.eval(), transform
|
151 |
+
|
152 |
+
|
153 |
+
class MiDaSInference(nn.Module):
|
154 |
+
MODEL_TYPES_TORCH_HUB = ["DPT_Large", "DPT_Hybrid", "MiDaS_small"]
|
155 |
+
MODEL_TYPES_ISL = [
|
156 |
+
"dpt_large",
|
157 |
+
"dpt_hybrid",
|
158 |
+
"midas_v21",
|
159 |
+
"midas_v21_small",
|
160 |
+
]
|
161 |
+
|
162 |
+
def __init__(self, model_type):
|
163 |
+
super().__init__()
|
164 |
+
assert model_type in self.MODEL_TYPES_ISL
|
165 |
+
model, _ = load_model(model_type)
|
166 |
+
self.model = model
|
167 |
+
self.model.train = disabled_train
|
168 |
+
|
169 |
+
def forward(self, x):
|
170 |
+
with torch.no_grad():
|
171 |
+
prediction = self.model(x)
|
172 |
+
return prediction
|
external/midas/midas/__init__.py
ADDED
File without changes
|
external/midas/midas/base_model.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
class BaseModel(torch.nn.Module):
|
5 |
+
def load(self, path):
|
6 |
+
"""Load model from file.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
path (str): file path
|
10 |
+
"""
|
11 |
+
parameters = torch.load(path, map_location=torch.device('cpu'))
|
12 |
+
|
13 |
+
if "optimizer" in parameters:
|
14 |
+
parameters = parameters["model"]
|
15 |
+
|
16 |
+
self.load_state_dict(parameters)
|
external/midas/midas/blocks.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from .vit import (
|
5 |
+
_make_pretrained_vitb_rn50_384,
|
6 |
+
_make_pretrained_vitl16_384,
|
7 |
+
_make_pretrained_vitb16_384,
|
8 |
+
forward_vit,
|
9 |
+
)
|
10 |
+
|
11 |
+
def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
|
12 |
+
if backbone == "vitl16_384":
|
13 |
+
pretrained = _make_pretrained_vitl16_384(
|
14 |
+
use_pretrained, hooks=hooks, use_readout=use_readout
|
15 |
+
)
|
16 |
+
scratch = _make_scratch(
|
17 |
+
[256, 512, 1024, 1024], features, groups=groups, expand=expand
|
18 |
+
) # ViT-L/16 - 85.0% Top1 (backbone)
|
19 |
+
elif backbone == "vitb_rn50_384":
|
20 |
+
pretrained = _make_pretrained_vitb_rn50_384(
|
21 |
+
use_pretrained,
|
22 |
+
hooks=hooks,
|
23 |
+
use_vit_only=use_vit_only,
|
24 |
+
use_readout=use_readout,
|
25 |
+
)
|
26 |
+
scratch = _make_scratch(
|
27 |
+
[256, 512, 768, 768], features, groups=groups, expand=expand
|
28 |
+
) # ViT-H/16 - 85.0% Top1 (backbone)
|
29 |
+
elif backbone == "vitb16_384":
|
30 |
+
pretrained = _make_pretrained_vitb16_384(
|
31 |
+
use_pretrained, hooks=hooks, use_readout=use_readout
|
32 |
+
)
|
33 |
+
scratch = _make_scratch(
|
34 |
+
[96, 192, 384, 768], features, groups=groups, expand=expand
|
35 |
+
) # ViT-B/16 - 84.6% Top1 (backbone)
|
36 |
+
elif backbone == "resnext101_wsl":
|
37 |
+
pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
|
38 |
+
scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3
|
39 |
+
elif backbone == "efficientnet_lite3":
|
40 |
+
pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
|
41 |
+
scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3
|
42 |
+
else:
|
43 |
+
print(f"Backbone '{backbone}' not implemented")
|
44 |
+
assert False
|
45 |
+
|
46 |
+
return pretrained, scratch
|
47 |
+
|
48 |
+
|
49 |
+
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
50 |
+
scratch = nn.Module()
|
51 |
+
|
52 |
+
out_shape1 = out_shape
|
53 |
+
out_shape2 = out_shape
|
54 |
+
out_shape3 = out_shape
|
55 |
+
out_shape4 = out_shape
|
56 |
+
if expand==True:
|
57 |
+
out_shape1 = out_shape
|
58 |
+
out_shape2 = out_shape*2
|
59 |
+
out_shape3 = out_shape*4
|
60 |
+
out_shape4 = out_shape*8
|
61 |
+
|
62 |
+
scratch.layer1_rn = nn.Conv2d(
|
63 |
+
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
64 |
+
)
|
65 |
+
scratch.layer2_rn = nn.Conv2d(
|
66 |
+
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
67 |
+
)
|
68 |
+
scratch.layer3_rn = nn.Conv2d(
|
69 |
+
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
70 |
+
)
|
71 |
+
scratch.layer4_rn = nn.Conv2d(
|
72 |
+
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
73 |
+
)
|
74 |
+
|
75 |
+
return scratch
|
76 |
+
|
77 |
+
|
78 |
+
def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
|
79 |
+
efficientnet = torch.hub.load(
|
80 |
+
"rwightman/gen-efficientnet-pytorch",
|
81 |
+
"tf_efficientnet_lite3",
|
82 |
+
pretrained=use_pretrained,
|
83 |
+
exportable=exportable
|
84 |
+
)
|
85 |
+
return _make_efficientnet_backbone(efficientnet)
|
86 |
+
|
87 |
+
|
88 |
+
def _make_efficientnet_backbone(effnet):
|
89 |
+
pretrained = nn.Module()
|
90 |
+
|
91 |
+
pretrained.layer1 = nn.Sequential(
|
92 |
+
effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
|
93 |
+
)
|
94 |
+
pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
|
95 |
+
pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
|
96 |
+
pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
|
97 |
+
|
98 |
+
return pretrained
|
99 |
+
|
100 |
+
|
101 |
+
def _make_resnet_backbone(resnet):
|
102 |
+
pretrained = nn.Module()
|
103 |
+
pretrained.layer1 = nn.Sequential(
|
104 |
+
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
|
105 |
+
)
|
106 |
+
|
107 |
+
pretrained.layer2 = resnet.layer2
|
108 |
+
pretrained.layer3 = resnet.layer3
|
109 |
+
pretrained.layer4 = resnet.layer4
|
110 |
+
|
111 |
+
return pretrained
|
112 |
+
|
113 |
+
|
114 |
+
def _make_pretrained_resnext101_wsl(use_pretrained):
|
115 |
+
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
|
116 |
+
return _make_resnet_backbone(resnet)
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
class Interpolate(nn.Module):
|
121 |
+
"""Interpolation module.
|
122 |
+
"""
|
123 |
+
|
124 |
+
def __init__(self, scale_factor, mode, align_corners=False):
|
125 |
+
"""Init.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
scale_factor (float): scaling
|
129 |
+
mode (str): interpolation mode
|
130 |
+
"""
|
131 |
+
super(Interpolate, self).__init__()
|
132 |
+
|
133 |
+
self.interp = nn.functional.interpolate
|
134 |
+
self.scale_factor = scale_factor
|
135 |
+
self.mode = mode
|
136 |
+
self.align_corners = align_corners
|
137 |
+
|
138 |
+
def forward(self, x):
|
139 |
+
"""Forward pass.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
x (tensor): input
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
tensor: interpolated data
|
146 |
+
"""
|
147 |
+
|
148 |
+
x = self.interp(
|
149 |
+
x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
|
150 |
+
)
|
151 |
+
|
152 |
+
return x
|
153 |
+
|
154 |
+
|
155 |
+
class ResidualConvUnit(nn.Module):
|
156 |
+
"""Residual convolution module.
|
157 |
+
"""
|
158 |
+
|
159 |
+
def __init__(self, features):
|
160 |
+
"""Init.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
features (int): number of features
|
164 |
+
"""
|
165 |
+
super().__init__()
|
166 |
+
|
167 |
+
self.conv1 = nn.Conv2d(
|
168 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
169 |
+
)
|
170 |
+
|
171 |
+
self.conv2 = nn.Conv2d(
|
172 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
173 |
+
)
|
174 |
+
|
175 |
+
self.relu = nn.ReLU(inplace=True)
|
176 |
+
|
177 |
+
def forward(self, x):
|
178 |
+
"""Forward pass.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
x (tensor): input
|
182 |
+
|
183 |
+
Returns:
|
184 |
+
tensor: output
|
185 |
+
"""
|
186 |
+
out = self.relu(x)
|
187 |
+
out = self.conv1(out)
|
188 |
+
out = self.relu(out)
|
189 |
+
out = self.conv2(out)
|
190 |
+
|
191 |
+
return out + x
|
192 |
+
|
193 |
+
|
194 |
+
class FeatureFusionBlock(nn.Module):
|
195 |
+
"""Feature fusion block.
|
196 |
+
"""
|
197 |
+
|
198 |
+
def __init__(self, features):
|
199 |
+
"""Init.
|
200 |
+
|
201 |
+
Args:
|
202 |
+
features (int): number of features
|
203 |
+
"""
|
204 |
+
super(FeatureFusionBlock, self).__init__()
|
205 |
+
|
206 |
+
self.resConfUnit1 = ResidualConvUnit(features)
|
207 |
+
self.resConfUnit2 = ResidualConvUnit(features)
|
208 |
+
|
209 |
+
def forward(self, *xs):
|
210 |
+
"""Forward pass.
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
tensor: output
|
214 |
+
"""
|
215 |
+
output = xs[0]
|
216 |
+
|
217 |
+
if len(xs) == 2:
|
218 |
+
output += self.resConfUnit1(xs[1])
|
219 |
+
|
220 |
+
output = self.resConfUnit2(output)
|
221 |
+
|
222 |
+
output = nn.functional.interpolate(
|
223 |
+
output, scale_factor=2, mode="bilinear", align_corners=True
|
224 |
+
)
|
225 |
+
|
226 |
+
return output
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
class ResidualConvUnit_custom(nn.Module):
|
232 |
+
"""Residual convolution module.
|
233 |
+
"""
|
234 |
+
|
235 |
+
def __init__(self, features, activation, bn):
|
236 |
+
"""Init.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
features (int): number of features
|
240 |
+
"""
|
241 |
+
super().__init__()
|
242 |
+
|
243 |
+
self.bn = bn
|
244 |
+
|
245 |
+
self.groups=1
|
246 |
+
|
247 |
+
self.conv1 = nn.Conv2d(
|
248 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
249 |
+
)
|
250 |
+
|
251 |
+
self.conv2 = nn.Conv2d(
|
252 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
253 |
+
)
|
254 |
+
|
255 |
+
if self.bn==True:
|
256 |
+
self.bn1 = nn.BatchNorm2d(features)
|
257 |
+
self.bn2 = nn.BatchNorm2d(features)
|
258 |
+
|
259 |
+
self.activation = activation
|
260 |
+
|
261 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
262 |
+
|
263 |
+
def forward(self, x):
|
264 |
+
"""Forward pass.
|
265 |
+
|
266 |
+
Args:
|
267 |
+
x (tensor): input
|
268 |
+
|
269 |
+
Returns:
|
270 |
+
tensor: output
|
271 |
+
"""
|
272 |
+
|
273 |
+
out = self.activation(x)
|
274 |
+
out = self.conv1(out)
|
275 |
+
if self.bn==True:
|
276 |
+
out = self.bn1(out)
|
277 |
+
|
278 |
+
out = self.activation(out)
|
279 |
+
out = self.conv2(out)
|
280 |
+
if self.bn==True:
|
281 |
+
out = self.bn2(out)
|
282 |
+
|
283 |
+
if self.groups > 1:
|
284 |
+
out = self.conv_merge(out)
|
285 |
+
|
286 |
+
return self.skip_add.add(out, x)
|
287 |
+
|
288 |
+
# return out + x
|
289 |
+
|
290 |
+
|
291 |
+
class FeatureFusionBlock_custom(nn.Module):
|
292 |
+
"""Feature fusion block.
|
293 |
+
"""
|
294 |
+
|
295 |
+
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
|
296 |
+
"""Init.
|
297 |
+
|
298 |
+
Args:
|
299 |
+
features (int): number of features
|
300 |
+
"""
|
301 |
+
super(FeatureFusionBlock_custom, self).__init__()
|
302 |
+
|
303 |
+
self.deconv = deconv
|
304 |
+
self.align_corners = align_corners
|
305 |
+
|
306 |
+
self.groups=1
|
307 |
+
|
308 |
+
self.expand = expand
|
309 |
+
out_features = features
|
310 |
+
if self.expand==True:
|
311 |
+
out_features = features//2
|
312 |
+
|
313 |
+
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
|
314 |
+
|
315 |
+
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
|
316 |
+
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
|
317 |
+
|
318 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
319 |
+
|
320 |
+
def forward(self, *xs):
|
321 |
+
"""Forward pass.
|
322 |
+
|
323 |
+
Returns:
|
324 |
+
tensor: output
|
325 |
+
"""
|
326 |
+
output = xs[0]
|
327 |
+
|
328 |
+
if len(xs) == 2:
|
329 |
+
res = self.resConfUnit1(xs[1])
|
330 |
+
output = self.skip_add.add(output, res)
|
331 |
+
# output += res
|
332 |
+
|
333 |
+
output = self.resConfUnit2(output)
|
334 |
+
|
335 |
+
output = nn.functional.interpolate(
|
336 |
+
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
|
337 |
+
)
|
338 |
+
|
339 |
+
output = self.out_conv(output)
|
340 |
+
|
341 |
+
return output
|
342 |
+
|
external/midas/midas/dpt_depth.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from .base_model import BaseModel
|
6 |
+
from .blocks import (
|
7 |
+
FeatureFusionBlock,
|
8 |
+
FeatureFusionBlock_custom,
|
9 |
+
Interpolate,
|
10 |
+
_make_encoder,
|
11 |
+
forward_vit,
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
def _make_fusion_block(features, use_bn):
|
16 |
+
return FeatureFusionBlock_custom(
|
17 |
+
features,
|
18 |
+
nn.ReLU(False),
|
19 |
+
deconv=False,
|
20 |
+
bn=use_bn,
|
21 |
+
expand=False,
|
22 |
+
align_corners=True,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
class DPT(BaseModel):
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
head,
|
30 |
+
features=256,
|
31 |
+
backbone="vitb_rn50_384",
|
32 |
+
readout="project",
|
33 |
+
channels_last=False,
|
34 |
+
use_bn=False,
|
35 |
+
):
|
36 |
+
|
37 |
+
super(DPT, self).__init__()
|
38 |
+
|
39 |
+
self.channels_last = channels_last
|
40 |
+
|
41 |
+
hooks = {
|
42 |
+
"vitb_rn50_384": [0, 1, 8, 11],
|
43 |
+
"vitb16_384": [2, 5, 8, 11],
|
44 |
+
"vitl16_384": [5, 11, 17, 23],
|
45 |
+
}
|
46 |
+
|
47 |
+
# Instantiate backbone and reassemble blocks
|
48 |
+
self.pretrained, self.scratch = _make_encoder(
|
49 |
+
backbone,
|
50 |
+
features,
|
51 |
+
False, # Set to true of you want to train from scratch, uses ImageNet weights
|
52 |
+
groups=1,
|
53 |
+
expand=False,
|
54 |
+
exportable=False,
|
55 |
+
hooks=hooks[backbone],
|
56 |
+
use_readout=readout,
|
57 |
+
)
|
58 |
+
|
59 |
+
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
60 |
+
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
61 |
+
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
62 |
+
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
63 |
+
|
64 |
+
self.scratch.output_conv = head
|
65 |
+
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
if self.channels_last == True:
|
69 |
+
x.contiguous(memory_format=torch.channels_last)
|
70 |
+
|
71 |
+
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
|
72 |
+
|
73 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
74 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
75 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
76 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
77 |
+
|
78 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
79 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
80 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
81 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
82 |
+
|
83 |
+
out = self.scratch.output_conv(path_1)
|
84 |
+
|
85 |
+
return out
|
86 |
+
|
87 |
+
|
88 |
+
class DPTDepthModel(DPT):
|
89 |
+
def __init__(self, path=None, non_negative=True, **kwargs):
|
90 |
+
features = kwargs["features"] if "features" in kwargs else 256
|
91 |
+
|
92 |
+
head = nn.Sequential(
|
93 |
+
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
|
94 |
+
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
|
95 |
+
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
|
96 |
+
nn.ReLU(True),
|
97 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
98 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
99 |
+
nn.Identity(),
|
100 |
+
)
|
101 |
+
|
102 |
+
super().__init__(head, **kwargs)
|
103 |
+
|
104 |
+
if path is not None:
|
105 |
+
self.load(path)
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
return super().forward(x).squeeze(dim=1)
|
109 |
+
|
external/midas/midas/midas_net.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
+
This file contains code that is adapted from
|
3 |
+
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from .base_model import BaseModel
|
9 |
+
from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
|
10 |
+
|
11 |
+
|
12 |
+
class MidasNet(BaseModel):
|
13 |
+
"""Network for monocular depth estimation.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, path=None, features=256, non_negative=True):
|
17 |
+
"""Init.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
path (str, optional): Path to saved model. Defaults to None.
|
21 |
+
features (int, optional): Number of features. Defaults to 256.
|
22 |
+
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
23 |
+
"""
|
24 |
+
print("Loading weights: ", path)
|
25 |
+
|
26 |
+
super(MidasNet, self).__init__()
|
27 |
+
|
28 |
+
use_pretrained = False if path is None else True
|
29 |
+
|
30 |
+
self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
|
31 |
+
|
32 |
+
self.scratch.refinenet4 = FeatureFusionBlock(features)
|
33 |
+
self.scratch.refinenet3 = FeatureFusionBlock(features)
|
34 |
+
self.scratch.refinenet2 = FeatureFusionBlock(features)
|
35 |
+
self.scratch.refinenet1 = FeatureFusionBlock(features)
|
36 |
+
|
37 |
+
self.scratch.output_conv = nn.Sequential(
|
38 |
+
nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
|
39 |
+
Interpolate(scale_factor=2, mode="bilinear"),
|
40 |
+
nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
|
41 |
+
nn.ReLU(True),
|
42 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
43 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
44 |
+
)
|
45 |
+
|
46 |
+
if path:
|
47 |
+
self.load(path)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
"""Forward pass.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
x (tensor): input data (image)
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
tensor: depth
|
57 |
+
"""
|
58 |
+
|
59 |
+
layer_1 = self.pretrained.layer1(x)
|
60 |
+
layer_2 = self.pretrained.layer2(layer_1)
|
61 |
+
layer_3 = self.pretrained.layer3(layer_2)
|
62 |
+
layer_4 = self.pretrained.layer4(layer_3)
|
63 |
+
|
64 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
65 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
66 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
67 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
68 |
+
|
69 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
70 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
71 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
72 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
73 |
+
|
74 |
+
out = self.scratch.output_conv(path_1)
|
75 |
+
|
76 |
+
return torch.squeeze(out, dim=1)
|
external/midas/midas/midas_net_custom.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
+
This file contains code that is adapted from
|
3 |
+
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from .base_model import BaseModel
|
9 |
+
from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
|
10 |
+
|
11 |
+
|
12 |
+
class MidasNet_small(BaseModel):
|
13 |
+
"""Network for monocular depth estimation.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
|
17 |
+
blocks={'expand': True}):
|
18 |
+
"""Init.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
path (str, optional): Path to saved model. Defaults to None.
|
22 |
+
features (int, optional): Number of features. Defaults to 256.
|
23 |
+
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
24 |
+
"""
|
25 |
+
print("Loading weights: ", path)
|
26 |
+
|
27 |
+
super(MidasNet_small, self).__init__()
|
28 |
+
|
29 |
+
use_pretrained = False if path else True
|
30 |
+
|
31 |
+
self.channels_last = channels_last
|
32 |
+
self.blocks = blocks
|
33 |
+
self.backbone = backbone
|
34 |
+
|
35 |
+
self.groups = 1
|
36 |
+
|
37 |
+
features1=features
|
38 |
+
features2=features
|
39 |
+
features3=features
|
40 |
+
features4=features
|
41 |
+
self.expand = False
|
42 |
+
if "expand" in self.blocks and self.blocks['expand'] == True:
|
43 |
+
self.expand = True
|
44 |
+
features1=features
|
45 |
+
features2=features*2
|
46 |
+
features3=features*4
|
47 |
+
features4=features*8
|
48 |
+
|
49 |
+
self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
|
50 |
+
|
51 |
+
self.scratch.activation = nn.ReLU(False)
|
52 |
+
|
53 |
+
self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
54 |
+
self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
55 |
+
self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
56 |
+
self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
|
57 |
+
|
58 |
+
|
59 |
+
self.scratch.output_conv = nn.Sequential(
|
60 |
+
nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
|
61 |
+
Interpolate(scale_factor=2, mode="bilinear"),
|
62 |
+
nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
|
63 |
+
self.scratch.activation,
|
64 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
65 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
66 |
+
nn.Identity(),
|
67 |
+
)
|
68 |
+
|
69 |
+
if path:
|
70 |
+
self.load(path)
|
71 |
+
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
"""Forward pass.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
x (tensor): input data (image)
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
tensor: depth
|
81 |
+
"""
|
82 |
+
if self.channels_last==True:
|
83 |
+
print("self.channels_last = ", self.channels_last)
|
84 |
+
x.contiguous(memory_format=torch.channels_last)
|
85 |
+
|
86 |
+
|
87 |
+
layer_1 = self.pretrained.layer1(x)
|
88 |
+
layer_2 = self.pretrained.layer2(layer_1)
|
89 |
+
layer_3 = self.pretrained.layer3(layer_2)
|
90 |
+
layer_4 = self.pretrained.layer4(layer_3)
|
91 |
+
|
92 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
93 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
94 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
95 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
96 |
+
|
97 |
+
|
98 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
99 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
100 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
101 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
102 |
+
|
103 |
+
out = self.scratch.output_conv(path_1)
|
104 |
+
|
105 |
+
return torch.squeeze(out, dim=1)
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
def fuse_model(m):
|
110 |
+
prev_previous_type = nn.Identity()
|
111 |
+
prev_previous_name = ''
|
112 |
+
previous_type = nn.Identity()
|
113 |
+
previous_name = ''
|
114 |
+
for name, module in m.named_modules():
|
115 |
+
if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
|
116 |
+
# print("FUSED ", prev_previous_name, previous_name, name)
|
117 |
+
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
|
118 |
+
elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
|
119 |
+
# print("FUSED ", prev_previous_name, previous_name)
|
120 |
+
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
|
121 |
+
# elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
|
122 |
+
# print("FUSED ", previous_name, name)
|
123 |
+
# torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
|
124 |
+
|
125 |
+
prev_previous_type = previous_type
|
126 |
+
prev_previous_name = previous_name
|
127 |
+
previous_type = type(module)
|
128 |
+
previous_name = name
|
external/midas/midas/transforms.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
import math
|
4 |
+
|
5 |
+
|
6 |
+
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
|
7 |
+
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
sample (dict): sample
|
11 |
+
size (tuple): image size
|
12 |
+
|
13 |
+
Returns:
|
14 |
+
tuple: new size
|
15 |
+
"""
|
16 |
+
shape = list(sample["disparity"].shape)
|
17 |
+
|
18 |
+
if shape[0] >= size[0] and shape[1] >= size[1]:
|
19 |
+
return sample
|
20 |
+
|
21 |
+
scale = [0, 0]
|
22 |
+
scale[0] = size[0] / shape[0]
|
23 |
+
scale[1] = size[1] / shape[1]
|
24 |
+
|
25 |
+
scale = max(scale)
|
26 |
+
|
27 |
+
shape[0] = math.ceil(scale * shape[0])
|
28 |
+
shape[1] = math.ceil(scale * shape[1])
|
29 |
+
|
30 |
+
# resize
|
31 |
+
sample["image"] = cv2.resize(
|
32 |
+
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
|
33 |
+
)
|
34 |
+
|
35 |
+
sample["disparity"] = cv2.resize(
|
36 |
+
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
|
37 |
+
)
|
38 |
+
sample["mask"] = cv2.resize(
|
39 |
+
sample["mask"].astype(np.float32),
|
40 |
+
tuple(shape[::-1]),
|
41 |
+
interpolation=cv2.INTER_NEAREST,
|
42 |
+
)
|
43 |
+
sample["mask"] = sample["mask"].astype(bool)
|
44 |
+
|
45 |
+
return tuple(shape)
|
46 |
+
|
47 |
+
|
48 |
+
class Resize(object):
|
49 |
+
"""Resize sample to given size (width, height).
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
width,
|
55 |
+
height,
|
56 |
+
resize_target=True,
|
57 |
+
keep_aspect_ratio=False,
|
58 |
+
ensure_multiple_of=1,
|
59 |
+
resize_method="lower_bound",
|
60 |
+
image_interpolation_method=cv2.INTER_AREA,
|
61 |
+
):
|
62 |
+
"""Init.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
width (int): desired output width
|
66 |
+
height (int): desired output height
|
67 |
+
resize_target (bool, optional):
|
68 |
+
True: Resize the full sample (image, mask, target).
|
69 |
+
False: Resize image only.
|
70 |
+
Defaults to True.
|
71 |
+
keep_aspect_ratio (bool, optional):
|
72 |
+
True: Keep the aspect ratio of the input sample.
|
73 |
+
Output sample might not have the given width and height, and
|
74 |
+
resize behaviour depends on the parameter 'resize_method'.
|
75 |
+
Defaults to False.
|
76 |
+
ensure_multiple_of (int, optional):
|
77 |
+
Output width and height is constrained to be multiple of this parameter.
|
78 |
+
Defaults to 1.
|
79 |
+
resize_method (str, optional):
|
80 |
+
"lower_bound": Output will be at least as large as the given size.
|
81 |
+
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
82 |
+
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
83 |
+
Defaults to "lower_bound".
|
84 |
+
"""
|
85 |
+
self.__width = width
|
86 |
+
self.__height = height
|
87 |
+
|
88 |
+
self.__resize_target = resize_target
|
89 |
+
self.__keep_aspect_ratio = keep_aspect_ratio
|
90 |
+
self.__multiple_of = ensure_multiple_of
|
91 |
+
self.__resize_method = resize_method
|
92 |
+
self.__image_interpolation_method = image_interpolation_method
|
93 |
+
|
94 |
+
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
95 |
+
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
96 |
+
|
97 |
+
if max_val is not None and y > max_val:
|
98 |
+
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
99 |
+
|
100 |
+
if y < min_val:
|
101 |
+
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
102 |
+
|
103 |
+
return y
|
104 |
+
|
105 |
+
def get_size(self, width, height):
|
106 |
+
# determine new height and width
|
107 |
+
scale_height = self.__height / height
|
108 |
+
scale_width = self.__width / width
|
109 |
+
|
110 |
+
if self.__keep_aspect_ratio:
|
111 |
+
if self.__resize_method == "lower_bound":
|
112 |
+
# scale such that output size is lower bound
|
113 |
+
if scale_width > scale_height:
|
114 |
+
# fit width
|
115 |
+
scale_height = scale_width
|
116 |
+
else:
|
117 |
+
# fit height
|
118 |
+
scale_width = scale_height
|
119 |
+
elif self.__resize_method == "upper_bound":
|
120 |
+
# scale such that output size is upper bound
|
121 |
+
if scale_width < scale_height:
|
122 |
+
# fit width
|
123 |
+
scale_height = scale_width
|
124 |
+
else:
|
125 |
+
# fit height
|
126 |
+
scale_width = scale_height
|
127 |
+
elif self.__resize_method == "minimal":
|
128 |
+
# scale as least as possbile
|
129 |
+
if abs(1 - scale_width) < abs(1 - scale_height):
|
130 |
+
# fit width
|
131 |
+
scale_height = scale_width
|
132 |
+
else:
|
133 |
+
# fit height
|
134 |
+
scale_width = scale_height
|
135 |
+
else:
|
136 |
+
raise ValueError(
|
137 |
+
f"resize_method {self.__resize_method} not implemented"
|
138 |
+
)
|
139 |
+
|
140 |
+
if self.__resize_method == "lower_bound":
|
141 |
+
new_height = self.constrain_to_multiple_of(
|
142 |
+
scale_height * height, min_val=self.__height
|
143 |
+
)
|
144 |
+
new_width = self.constrain_to_multiple_of(
|
145 |
+
scale_width * width, min_val=self.__width
|
146 |
+
)
|
147 |
+
elif self.__resize_method == "upper_bound":
|
148 |
+
new_height = self.constrain_to_multiple_of(
|
149 |
+
scale_height * height, max_val=self.__height
|
150 |
+
)
|
151 |
+
new_width = self.constrain_to_multiple_of(
|
152 |
+
scale_width * width, max_val=self.__width
|
153 |
+
)
|
154 |
+
elif self.__resize_method == "minimal":
|
155 |
+
new_height = self.constrain_to_multiple_of(scale_height * height)
|
156 |
+
new_width = self.constrain_to_multiple_of(scale_width * width)
|
157 |
+
else:
|
158 |
+
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
159 |
+
|
160 |
+
return (new_width, new_height)
|
161 |
+
|
162 |
+
def __call__(self, sample):
|
163 |
+
width, height = self.get_size(
|
164 |
+
sample["image"].shape[1], sample["image"].shape[0]
|
165 |
+
)
|
166 |
+
|
167 |
+
# resize sample
|
168 |
+
sample["image"] = cv2.resize(
|
169 |
+
sample["image"],
|
170 |
+
(width, height),
|
171 |
+
interpolation=self.__image_interpolation_method,
|
172 |
+
)
|
173 |
+
|
174 |
+
if self.__resize_target:
|
175 |
+
if "disparity" in sample:
|
176 |
+
sample["disparity"] = cv2.resize(
|
177 |
+
sample["disparity"],
|
178 |
+
(width, height),
|
179 |
+
interpolation=cv2.INTER_NEAREST,
|
180 |
+
)
|
181 |
+
|
182 |
+
if "depth" in sample:
|
183 |
+
sample["depth"] = cv2.resize(
|
184 |
+
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
|
185 |
+
)
|
186 |
+
|
187 |
+
sample["mask"] = cv2.resize(
|
188 |
+
sample["mask"].astype(np.float32),
|
189 |
+
(width, height),
|
190 |
+
interpolation=cv2.INTER_NEAREST,
|
191 |
+
)
|
192 |
+
sample["mask"] = sample["mask"].astype(bool)
|
193 |
+
|
194 |
+
return sample
|
195 |
+
|
196 |
+
|
197 |
+
class NormalizeImage(object):
|
198 |
+
"""Normlize image by given mean and std.
|
199 |
+
"""
|
200 |
+
|
201 |
+
def __init__(self, mean, std):
|
202 |
+
self.__mean = mean
|
203 |
+
self.__std = std
|
204 |
+
|
205 |
+
def __call__(self, sample):
|
206 |
+
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
207 |
+
|
208 |
+
return sample
|
209 |
+
|
210 |
+
|
211 |
+
class PrepareForNet(object):
|
212 |
+
"""Prepare sample for usage as network input.
|
213 |
+
"""
|
214 |
+
|
215 |
+
def __init__(self):
|
216 |
+
pass
|
217 |
+
|
218 |
+
def __call__(self, sample):
|
219 |
+
image = np.transpose(sample["image"], (2, 0, 1))
|
220 |
+
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
221 |
+
|
222 |
+
if "mask" in sample:
|
223 |
+
sample["mask"] = sample["mask"].astype(np.float32)
|
224 |
+
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
225 |
+
|
226 |
+
if "disparity" in sample:
|
227 |
+
disparity = sample["disparity"].astype(np.float32)
|
228 |
+
sample["disparity"] = np.ascontiguousarray(disparity)
|
229 |
+
|
230 |
+
if "depth" in sample:
|
231 |
+
depth = sample["depth"].astype(np.float32)
|
232 |
+
sample["depth"] = np.ascontiguousarray(depth)
|
233 |
+
|
234 |
+
return sample
|
external/midas/midas/vit.py
ADDED
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import timm
|
4 |
+
import types
|
5 |
+
import math
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
|
9 |
+
class Slice(nn.Module):
|
10 |
+
def __init__(self, start_index=1):
|
11 |
+
super(Slice, self).__init__()
|
12 |
+
self.start_index = start_index
|
13 |
+
|
14 |
+
def forward(self, x):
|
15 |
+
return x[:, self.start_index :]
|
16 |
+
|
17 |
+
|
18 |
+
class AddReadout(nn.Module):
|
19 |
+
def __init__(self, start_index=1):
|
20 |
+
super(AddReadout, self).__init__()
|
21 |
+
self.start_index = start_index
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
if self.start_index == 2:
|
25 |
+
readout = (x[:, 0] + x[:, 1]) / 2
|
26 |
+
else:
|
27 |
+
readout = x[:, 0]
|
28 |
+
return x[:, self.start_index :] + readout.unsqueeze(1)
|
29 |
+
|
30 |
+
|
31 |
+
class ProjectReadout(nn.Module):
|
32 |
+
def __init__(self, in_features, start_index=1):
|
33 |
+
super(ProjectReadout, self).__init__()
|
34 |
+
self.start_index = start_index
|
35 |
+
|
36 |
+
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
|
40 |
+
features = torch.cat((x[:, self.start_index :], readout), -1)
|
41 |
+
|
42 |
+
return self.project(features)
|
43 |
+
|
44 |
+
|
45 |
+
class Transpose(nn.Module):
|
46 |
+
def __init__(self, dim0, dim1):
|
47 |
+
super(Transpose, self).__init__()
|
48 |
+
self.dim0 = dim0
|
49 |
+
self.dim1 = dim1
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
x = x.transpose(self.dim0, self.dim1)
|
53 |
+
return x
|
54 |
+
|
55 |
+
|
56 |
+
def forward_vit(pretrained, x):
|
57 |
+
b, c, h, w = x.shape
|
58 |
+
|
59 |
+
glob = pretrained.model.forward_flex(x)
|
60 |
+
|
61 |
+
layer_1 = pretrained.activations["1"]
|
62 |
+
layer_2 = pretrained.activations["2"]
|
63 |
+
layer_3 = pretrained.activations["3"]
|
64 |
+
layer_4 = pretrained.activations["4"]
|
65 |
+
|
66 |
+
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
|
67 |
+
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
|
68 |
+
layer_3 = pretrained.act_postprocess3[0:2](layer_3)
|
69 |
+
layer_4 = pretrained.act_postprocess4[0:2](layer_4)
|
70 |
+
|
71 |
+
unflatten = nn.Sequential(
|
72 |
+
nn.Unflatten(
|
73 |
+
2,
|
74 |
+
torch.Size(
|
75 |
+
[
|
76 |
+
h // pretrained.model.patch_size[1],
|
77 |
+
w // pretrained.model.patch_size[0],
|
78 |
+
]
|
79 |
+
),
|
80 |
+
)
|
81 |
+
)
|
82 |
+
|
83 |
+
if layer_1.ndim == 3:
|
84 |
+
layer_1 = unflatten(layer_1)
|
85 |
+
if layer_2.ndim == 3:
|
86 |
+
layer_2 = unflatten(layer_2)
|
87 |
+
if layer_3.ndim == 3:
|
88 |
+
layer_3 = unflatten(layer_3)
|
89 |
+
if layer_4.ndim == 3:
|
90 |
+
layer_4 = unflatten(layer_4)
|
91 |
+
|
92 |
+
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
|
93 |
+
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
|
94 |
+
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
|
95 |
+
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
|
96 |
+
|
97 |
+
return layer_1, layer_2, layer_3, layer_4
|
98 |
+
|
99 |
+
|
100 |
+
def _resize_pos_embed(self, posemb, gs_h, gs_w):
|
101 |
+
posemb_tok, posemb_grid = (
|
102 |
+
posemb[:, : self.start_index],
|
103 |
+
posemb[0, self.start_index :],
|
104 |
+
)
|
105 |
+
|
106 |
+
gs_old = int(math.sqrt(len(posemb_grid)))
|
107 |
+
|
108 |
+
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
109 |
+
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
|
110 |
+
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
|
111 |
+
|
112 |
+
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
113 |
+
|
114 |
+
return posemb
|
115 |
+
|
116 |
+
|
117 |
+
def forward_flex(self, x):
|
118 |
+
b, c, h, w = x.shape
|
119 |
+
|
120 |
+
pos_embed = self._resize_pos_embed(
|
121 |
+
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
|
122 |
+
)
|
123 |
+
|
124 |
+
B = x.shape[0]
|
125 |
+
|
126 |
+
if hasattr(self.patch_embed, "backbone"):
|
127 |
+
x = self.patch_embed.backbone(x)
|
128 |
+
if isinstance(x, (list, tuple)):
|
129 |
+
x = x[-1] # last feature if backbone outputs list/tuple of features
|
130 |
+
|
131 |
+
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
|
132 |
+
|
133 |
+
if getattr(self, "dist_token", None) is not None:
|
134 |
+
cls_tokens = self.cls_token.expand(
|
135 |
+
B, -1, -1
|
136 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
137 |
+
dist_token = self.dist_token.expand(B, -1, -1)
|
138 |
+
x = torch.cat((cls_tokens, dist_token, x), dim=1)
|
139 |
+
else:
|
140 |
+
cls_tokens = self.cls_token.expand(
|
141 |
+
B, -1, -1
|
142 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
143 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
144 |
+
|
145 |
+
x = x + pos_embed
|
146 |
+
x = self.pos_drop(x)
|
147 |
+
|
148 |
+
for blk in self.blocks:
|
149 |
+
x = blk(x)
|
150 |
+
|
151 |
+
x = self.norm(x)
|
152 |
+
|
153 |
+
return x
|
154 |
+
|
155 |
+
|
156 |
+
activations = {}
|
157 |
+
|
158 |
+
|
159 |
+
def get_activation(name):
|
160 |
+
def hook(model, input, output):
|
161 |
+
activations[name] = output
|
162 |
+
|
163 |
+
return hook
|
164 |
+
|
165 |
+
|
166 |
+
def get_readout_oper(vit_features, features, use_readout, start_index=1):
|
167 |
+
if use_readout == "ignore":
|
168 |
+
readout_oper = [Slice(start_index)] * len(features)
|
169 |
+
elif use_readout == "add":
|
170 |
+
readout_oper = [AddReadout(start_index)] * len(features)
|
171 |
+
elif use_readout == "project":
|
172 |
+
readout_oper = [
|
173 |
+
ProjectReadout(vit_features, start_index) for out_feat in features
|
174 |
+
]
|
175 |
+
else:
|
176 |
+
assert (
|
177 |
+
False
|
178 |
+
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
|
179 |
+
|
180 |
+
return readout_oper
|
181 |
+
|
182 |
+
|
183 |
+
def _make_vit_b16_backbone(
|
184 |
+
model,
|
185 |
+
features=[96, 192, 384, 768],
|
186 |
+
size=[384, 384],
|
187 |
+
hooks=[2, 5, 8, 11],
|
188 |
+
vit_features=768,
|
189 |
+
use_readout="ignore",
|
190 |
+
start_index=1,
|
191 |
+
):
|
192 |
+
pretrained = nn.Module()
|
193 |
+
|
194 |
+
pretrained.model = model
|
195 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
196 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
197 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
198 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
199 |
+
|
200 |
+
pretrained.activations = activations
|
201 |
+
|
202 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
203 |
+
|
204 |
+
# 32, 48, 136, 384
|
205 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
206 |
+
readout_oper[0],
|
207 |
+
Transpose(1, 2),
|
208 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
209 |
+
nn.Conv2d(
|
210 |
+
in_channels=vit_features,
|
211 |
+
out_channels=features[0],
|
212 |
+
kernel_size=1,
|
213 |
+
stride=1,
|
214 |
+
padding=0,
|
215 |
+
),
|
216 |
+
nn.ConvTranspose2d(
|
217 |
+
in_channels=features[0],
|
218 |
+
out_channels=features[0],
|
219 |
+
kernel_size=4,
|
220 |
+
stride=4,
|
221 |
+
padding=0,
|
222 |
+
bias=True,
|
223 |
+
dilation=1,
|
224 |
+
groups=1,
|
225 |
+
),
|
226 |
+
)
|
227 |
+
|
228 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
229 |
+
readout_oper[1],
|
230 |
+
Transpose(1, 2),
|
231 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
232 |
+
nn.Conv2d(
|
233 |
+
in_channels=vit_features,
|
234 |
+
out_channels=features[1],
|
235 |
+
kernel_size=1,
|
236 |
+
stride=1,
|
237 |
+
padding=0,
|
238 |
+
),
|
239 |
+
nn.ConvTranspose2d(
|
240 |
+
in_channels=features[1],
|
241 |
+
out_channels=features[1],
|
242 |
+
kernel_size=2,
|
243 |
+
stride=2,
|
244 |
+
padding=0,
|
245 |
+
bias=True,
|
246 |
+
dilation=1,
|
247 |
+
groups=1,
|
248 |
+
),
|
249 |
+
)
|
250 |
+
|
251 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
252 |
+
readout_oper[2],
|
253 |
+
Transpose(1, 2),
|
254 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
255 |
+
nn.Conv2d(
|
256 |
+
in_channels=vit_features,
|
257 |
+
out_channels=features[2],
|
258 |
+
kernel_size=1,
|
259 |
+
stride=1,
|
260 |
+
padding=0,
|
261 |
+
),
|
262 |
+
)
|
263 |
+
|
264 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
265 |
+
readout_oper[3],
|
266 |
+
Transpose(1, 2),
|
267 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
268 |
+
nn.Conv2d(
|
269 |
+
in_channels=vit_features,
|
270 |
+
out_channels=features[3],
|
271 |
+
kernel_size=1,
|
272 |
+
stride=1,
|
273 |
+
padding=0,
|
274 |
+
),
|
275 |
+
nn.Conv2d(
|
276 |
+
in_channels=features[3],
|
277 |
+
out_channels=features[3],
|
278 |
+
kernel_size=3,
|
279 |
+
stride=2,
|
280 |
+
padding=1,
|
281 |
+
),
|
282 |
+
)
|
283 |
+
|
284 |
+
pretrained.model.start_index = start_index
|
285 |
+
pretrained.model.patch_size = [16, 16]
|
286 |
+
|
287 |
+
# We inject this function into the VisionTransformer instances so that
|
288 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
289 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
290 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
291 |
+
_resize_pos_embed, pretrained.model
|
292 |
+
)
|
293 |
+
|
294 |
+
return pretrained
|
295 |
+
|
296 |
+
|
297 |
+
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
|
298 |
+
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
|
299 |
+
|
300 |
+
hooks = [5, 11, 17, 23] if hooks == None else hooks
|
301 |
+
return _make_vit_b16_backbone(
|
302 |
+
model,
|
303 |
+
features=[256, 512, 1024, 1024],
|
304 |
+
hooks=hooks,
|
305 |
+
vit_features=1024,
|
306 |
+
use_readout=use_readout,
|
307 |
+
)
|
308 |
+
|
309 |
+
|
310 |
+
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
|
311 |
+
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
|
312 |
+
|
313 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
314 |
+
return _make_vit_b16_backbone(
|
315 |
+
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
316 |
+
)
|
317 |
+
|
318 |
+
|
319 |
+
def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
|
320 |
+
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
|
321 |
+
|
322 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
323 |
+
return _make_vit_b16_backbone(
|
324 |
+
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
325 |
+
)
|
326 |
+
|
327 |
+
|
328 |
+
def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
|
329 |
+
model = timm.create_model(
|
330 |
+
"vit_deit_base_distilled_patch16_384", pretrained=pretrained
|
331 |
+
)
|
332 |
+
|
333 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
334 |
+
return _make_vit_b16_backbone(
|
335 |
+
model,
|
336 |
+
features=[96, 192, 384, 768],
|
337 |
+
hooks=hooks,
|
338 |
+
use_readout=use_readout,
|
339 |
+
start_index=2,
|
340 |
+
)
|
341 |
+
|
342 |
+
|
343 |
+
def _make_vit_b_rn50_backbone(
|
344 |
+
model,
|
345 |
+
features=[256, 512, 768, 768],
|
346 |
+
size=[384, 384],
|
347 |
+
hooks=[0, 1, 8, 11],
|
348 |
+
vit_features=768,
|
349 |
+
use_vit_only=False,
|
350 |
+
use_readout="ignore",
|
351 |
+
start_index=1,
|
352 |
+
):
|
353 |
+
pretrained = nn.Module()
|
354 |
+
|
355 |
+
pretrained.model = model
|
356 |
+
|
357 |
+
if use_vit_only == True:
|
358 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
359 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
360 |
+
else:
|
361 |
+
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
|
362 |
+
get_activation("1")
|
363 |
+
)
|
364 |
+
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
|
365 |
+
get_activation("2")
|
366 |
+
)
|
367 |
+
|
368 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
369 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
370 |
+
|
371 |
+
pretrained.activations = activations
|
372 |
+
|
373 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
374 |
+
|
375 |
+
if use_vit_only == True:
|
376 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
377 |
+
readout_oper[0],
|
378 |
+
Transpose(1, 2),
|
379 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
380 |
+
nn.Conv2d(
|
381 |
+
in_channels=vit_features,
|
382 |
+
out_channels=features[0],
|
383 |
+
kernel_size=1,
|
384 |
+
stride=1,
|
385 |
+
padding=0,
|
386 |
+
),
|
387 |
+
nn.ConvTranspose2d(
|
388 |
+
in_channels=features[0],
|
389 |
+
out_channels=features[0],
|
390 |
+
kernel_size=4,
|
391 |
+
stride=4,
|
392 |
+
padding=0,
|
393 |
+
bias=True,
|
394 |
+
dilation=1,
|
395 |
+
groups=1,
|
396 |
+
),
|
397 |
+
)
|
398 |
+
|
399 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
400 |
+
readout_oper[1],
|
401 |
+
Transpose(1, 2),
|
402 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
403 |
+
nn.Conv2d(
|
404 |
+
in_channels=vit_features,
|
405 |
+
out_channels=features[1],
|
406 |
+
kernel_size=1,
|
407 |
+
stride=1,
|
408 |
+
padding=0,
|
409 |
+
),
|
410 |
+
nn.ConvTranspose2d(
|
411 |
+
in_channels=features[1],
|
412 |
+
out_channels=features[1],
|
413 |
+
kernel_size=2,
|
414 |
+
stride=2,
|
415 |
+
padding=0,
|
416 |
+
bias=True,
|
417 |
+
dilation=1,
|
418 |
+
groups=1,
|
419 |
+
),
|
420 |
+
)
|
421 |
+
else:
|
422 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
423 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
424 |
+
)
|
425 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
426 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
427 |
+
)
|
428 |
+
|
429 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
430 |
+
readout_oper[2],
|
431 |
+
Transpose(1, 2),
|
432 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
433 |
+
nn.Conv2d(
|
434 |
+
in_channels=vit_features,
|
435 |
+
out_channels=features[2],
|
436 |
+
kernel_size=1,
|
437 |
+
stride=1,
|
438 |
+
padding=0,
|
439 |
+
),
|
440 |
+
)
|
441 |
+
|
442 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
443 |
+
readout_oper[3],
|
444 |
+
Transpose(1, 2),
|
445 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
446 |
+
nn.Conv2d(
|
447 |
+
in_channels=vit_features,
|
448 |
+
out_channels=features[3],
|
449 |
+
kernel_size=1,
|
450 |
+
stride=1,
|
451 |
+
padding=0,
|
452 |
+
),
|
453 |
+
nn.Conv2d(
|
454 |
+
in_channels=features[3],
|
455 |
+
out_channels=features[3],
|
456 |
+
kernel_size=3,
|
457 |
+
stride=2,
|
458 |
+
padding=1,
|
459 |
+
),
|
460 |
+
)
|
461 |
+
|
462 |
+
pretrained.model.start_index = start_index
|
463 |
+
pretrained.model.patch_size = [16, 16]
|
464 |
+
|
465 |
+
# We inject this function into the VisionTransformer instances so that
|
466 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
467 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
468 |
+
|
469 |
+
# We inject this function into the VisionTransformer instances so that
|
470 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
471 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
472 |
+
_resize_pos_embed, pretrained.model
|
473 |
+
)
|
474 |
+
|
475 |
+
return pretrained
|
476 |
+
|
477 |
+
|
478 |
+
def _make_pretrained_vitb_rn50_384(
|
479 |
+
pretrained, use_readout="ignore", hooks=None, use_vit_only=False
|
480 |
+
):
|
481 |
+
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
|
482 |
+
|
483 |
+
hooks = [0, 1, 8, 11] if hooks == None else hooks
|
484 |
+
return _make_vit_b_rn50_backbone(
|
485 |
+
model,
|
486 |
+
features=[256, 512, 768, 768],
|
487 |
+
size=[384, 384],
|
488 |
+
hooks=hooks,
|
489 |
+
use_vit_only=use_vit_only,
|
490 |
+
use_readout=use_readout,
|
491 |
+
)
|
external/midas/utils.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utils for monoDepth."""
|
2 |
+
import sys
|
3 |
+
import re
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
def read_pfm(path):
|
10 |
+
"""Read pfm file.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
path (str): path to file
|
14 |
+
|
15 |
+
Returns:
|
16 |
+
tuple: (data, scale)
|
17 |
+
"""
|
18 |
+
with open(path, "rb") as file:
|
19 |
+
|
20 |
+
color = None
|
21 |
+
width = None
|
22 |
+
height = None
|
23 |
+
scale = None
|
24 |
+
endian = None
|
25 |
+
|
26 |
+
header = file.readline().rstrip()
|
27 |
+
if header.decode("ascii") == "PF":
|
28 |
+
color = True
|
29 |
+
elif header.decode("ascii") == "Pf":
|
30 |
+
color = False
|
31 |
+
else:
|
32 |
+
raise Exception("Not a PFM file: " + path)
|
33 |
+
|
34 |
+
dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
|
35 |
+
if dim_match:
|
36 |
+
width, height = list(map(int, dim_match.groups()))
|
37 |
+
else:
|
38 |
+
raise Exception("Malformed PFM header.")
|
39 |
+
|
40 |
+
scale = float(file.readline().decode("ascii").rstrip())
|
41 |
+
if scale < 0:
|
42 |
+
# little-endian
|
43 |
+
endian = "<"
|
44 |
+
scale = -scale
|
45 |
+
else:
|
46 |
+
# big-endian
|
47 |
+
endian = ">"
|
48 |
+
|
49 |
+
data = np.fromfile(file, endian + "f")
|
50 |
+
shape = (height, width, 3) if color else (height, width)
|
51 |
+
|
52 |
+
data = np.reshape(data, shape)
|
53 |
+
data = np.flipud(data)
|
54 |
+
|
55 |
+
return data, scale
|
56 |
+
|
57 |
+
|
58 |
+
def write_pfm(path, image, scale=1):
|
59 |
+
"""Write pfm file.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
path (str): pathto file
|
63 |
+
image (array): data
|
64 |
+
scale (int, optional): Scale. Defaults to 1.
|
65 |
+
"""
|
66 |
+
|
67 |
+
with open(path, "wb") as file:
|
68 |
+
color = None
|
69 |
+
|
70 |
+
if image.dtype.name != "float32":
|
71 |
+
raise Exception("Image dtype must be float32.")
|
72 |
+
|
73 |
+
image = np.flipud(image)
|
74 |
+
|
75 |
+
if len(image.shape) == 3 and image.shape[2] == 3: # color image
|
76 |
+
color = True
|
77 |
+
elif (
|
78 |
+
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
|
79 |
+
): # greyscale
|
80 |
+
color = False
|
81 |
+
else:
|
82 |
+
raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
|
83 |
+
|
84 |
+
file.write("PF\n" if color else "Pf\n".encode())
|
85 |
+
file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
|
86 |
+
|
87 |
+
endian = image.dtype.byteorder
|
88 |
+
|
89 |
+
if endian == "<" or endian == "=" and sys.byteorder == "little":
|
90 |
+
scale = -scale
|
91 |
+
|
92 |
+
file.write("%f\n".encode() % scale)
|
93 |
+
|
94 |
+
image.tofile(file)
|
95 |
+
|
96 |
+
|
97 |
+
def read_image(path):
|
98 |
+
"""Read image and output RGB image (0-1).
|
99 |
+
|
100 |
+
Args:
|
101 |
+
path (str): path to file
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
array: RGB image (0-1)
|
105 |
+
"""
|
106 |
+
img = cv2.imread(path)
|
107 |
+
|
108 |
+
if img.ndim == 2:
|
109 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
110 |
+
|
111 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
|
112 |
+
|
113 |
+
return img
|
114 |
+
|
115 |
+
|
116 |
+
def resize_image(img):
|
117 |
+
"""Resize image and make it fit for network.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
img (array): image
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
tensor: data ready for network
|
124 |
+
"""
|
125 |
+
height_orig = img.shape[0]
|
126 |
+
width_orig = img.shape[1]
|
127 |
+
|
128 |
+
if width_orig > height_orig:
|
129 |
+
scale = width_orig / 384
|
130 |
+
else:
|
131 |
+
scale = height_orig / 384
|
132 |
+
|
133 |
+
height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
|
134 |
+
width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
|
135 |
+
|
136 |
+
img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
|
137 |
+
|
138 |
+
img_resized = (
|
139 |
+
torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
|
140 |
+
)
|
141 |
+
img_resized = img_resized.unsqueeze(0)
|
142 |
+
|
143 |
+
return img_resized
|
144 |
+
|
145 |
+
|
146 |
+
def resize_depth(depth, width, height):
|
147 |
+
"""Resize depth map and bring to CPU (numpy).
|
148 |
+
|
149 |
+
Args:
|
150 |
+
depth (tensor): depth
|
151 |
+
width (int): image width
|
152 |
+
height (int): image height
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
array: processed depth
|
156 |
+
"""
|
157 |
+
depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
|
158 |
+
|
159 |
+
depth_resized = cv2.resize(
|
160 |
+
depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
|
161 |
+
)
|
162 |
+
|
163 |
+
return depth_resized
|
164 |
+
|
165 |
+
def write_depth(path, depth, bits=1):
|
166 |
+
"""Write depth map to pfm and png file.
|
167 |
+
|
168 |
+
Args:
|
169 |
+
path (str): filepath without extension
|
170 |
+
depth (array): depth
|
171 |
+
"""
|
172 |
+
write_pfm(path + ".pfm", depth.astype(np.float32))
|
173 |
+
|
174 |
+
depth_min = depth.min()
|
175 |
+
depth_max = depth.max()
|
176 |
+
|
177 |
+
max_val = (2**(8*bits))-1
|
178 |
+
|
179 |
+
if depth_max - depth_min > np.finfo("float").eps:
|
180 |
+
out = max_val * (depth - depth_min) / (depth_max - depth_min)
|
181 |
+
else:
|
182 |
+
out = np.zeros(depth.shape, dtype=depth.type)
|
183 |
+
|
184 |
+
if bits == 1:
|
185 |
+
cv2.imwrite(path + ".png", out.astype("uint8"))
|
186 |
+
elif bits == 2:
|
187 |
+
cv2.imwrite(path + ".png", out.astype("uint16"))
|
188 |
+
|
189 |
+
return
|
inference.py
CHANGED
@@ -14,6 +14,7 @@ from internals.pipelines.img_to_text import Image2Text
|
|
14 |
from internals.pipelines.inpainter import InPainter
|
15 |
from internals.pipelines.pose_detector import PoseDetector
|
16 |
from internals.pipelines.prompt_modifier import PromptModifier
|
|
|
17 |
from internals.pipelines.safety_checker import SafetyChecker
|
18 |
from internals.util.args import apply_style_args
|
19 |
from internals.util.avatar import Avatar
|
@@ -41,6 +42,7 @@ inpainter = InPainter()
|
|
41 |
high_res = HighRes()
|
42 |
img2text = Image2Text()
|
43 |
img_classifier = ImageClassifier()
|
|
|
44 |
controlnet = ControlNet()
|
45 |
lora_style = LoraStyle()
|
46 |
text2img_pipe = Text2Img()
|
@@ -84,7 +86,9 @@ def canny(task: Task):
|
|
84 |
controlnet.load_canny()
|
85 |
|
86 |
# pipe2 is used for canny and pose
|
87 |
-
lora_patcher = lora_style.get_patcher(
|
|
|
|
|
88 |
lora_patcher.patch()
|
89 |
|
90 |
images, has_nsfw = controlnet.process_canny(
|
@@ -170,7 +174,9 @@ def scribble(task: Task):
|
|
170 |
|
171 |
controlnet.load_scribble()
|
172 |
|
173 |
-
lora_patcher = lora_style.get_patcher(
|
|
|
|
|
174 |
lora_patcher.patch()
|
175 |
|
176 |
images, has_nsfw = controlnet.process_scribble(
|
@@ -214,7 +220,9 @@ def linearart(task: Task):
|
|
214 |
|
215 |
controlnet.load_linearart()
|
216 |
|
217 |
-
lora_patcher = lora_style.get_patcher(
|
|
|
|
|
218 |
lora_patcher.patch()
|
219 |
|
220 |
images, has_nsfw = controlnet.process_linearart(
|
@@ -259,10 +267,13 @@ def pose(task: Task, s3_outkey: str = "_pose", poses: Optional[list] = None):
|
|
259 |
controlnet.load_pose()
|
260 |
|
261 |
# pipe2 is used for canny and pose
|
262 |
-
lora_patcher = lora_style.get_patcher(
|
|
|
|
|
263 |
lora_patcher.patch()
|
264 |
|
265 |
if not task.get_pose_estimation():
|
|
|
266 |
pose = download_image(task.get_imageUrl()).resize(
|
267 |
(task.get_width(), task.get_height())
|
268 |
)
|
@@ -278,9 +289,15 @@ def pose(task: Task, s3_outkey: str = "_pose", poses: Optional[list] = None):
|
|
278 |
else:
|
279 |
poses = [controlnet.detect_pose(task.get_imageUrl())] * num_return_sequences
|
280 |
|
|
|
|
|
|
|
|
|
|
|
281 |
images, has_nsfw = controlnet.process_pose(
|
282 |
prompt=prompt,
|
283 |
image=poses,
|
|
|
284 |
seed=task.get_seed(),
|
285 |
steps=task.get_steps(),
|
286 |
negative_prompt=[task.get_negative_prompt()] * num_return_sequences,
|
@@ -299,8 +316,8 @@ def pose(task: Task, s3_outkey: str = "_pose", poses: Optional[list] = None):
|
|
299 |
steps=task.get_steps(),
|
300 |
)
|
301 |
|
302 |
-
|
303 |
-
upload_image(
|
304 |
|
305 |
generated_image_urls = upload_images(images, s3_outkey, task.get_taskId())
|
306 |
|
@@ -322,7 +339,9 @@ def text2img(task: Task):
|
|
322 |
|
323 |
width, height = get_intermediate_dimension(task)
|
324 |
|
325 |
-
lora_patcher = lora_style.get_patcher(
|
|
|
|
|
326 |
lora_patcher.patch()
|
327 |
|
328 |
torch.manual_seed(task.get_seed())
|
@@ -366,7 +385,9 @@ def img2img(task: Task):
|
|
366 |
|
367 |
width, height = get_intermediate_dimension(task)
|
368 |
|
369 |
-
lora_patcher = lora_style.get_patcher(
|
|
|
|
|
370 |
lora_patcher.patch()
|
371 |
|
372 |
torch.manual_seed(task.get_seed())
|
@@ -427,6 +448,42 @@ def inpaint(task: Task):
|
|
427 |
return {"modified_prompts": prompt, "generated_image_urls": generated_image_urls}
|
428 |
|
429 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
430 |
def load_model_by_task(task: Task):
|
431 |
if (
|
432 |
task.get_type()
|
@@ -444,6 +501,8 @@ def load_model_by_task(task: Task):
|
|
444 |
|
445 |
safety_checker.apply(text2img_pipe)
|
446 |
safety_checker.apply(img2img_pipe)
|
|
|
|
|
447 |
else:
|
448 |
if task.get_type() == TaskType.TILE_UPSCALE:
|
449 |
controlnet.load_tile_upscaler()
|
@@ -522,6 +581,8 @@ def predict_fn(data, pipe):
|
|
522 |
return scribble(task)
|
523 |
elif task_type == TaskType.LINEARART:
|
524 |
return linearart(task)
|
|
|
|
|
525 |
elif task_type == TaskType.SYSTEM_CMD:
|
526 |
os.system(task.get_prompt())
|
527 |
else:
|
|
|
14 |
from internals.pipelines.inpainter import InPainter
|
15 |
from internals.pipelines.pose_detector import PoseDetector
|
16 |
from internals.pipelines.prompt_modifier import PromptModifier
|
17 |
+
from internals.pipelines.replace_background import ReplaceBackground
|
18 |
from internals.pipelines.safety_checker import SafetyChecker
|
19 |
from internals.util.args import apply_style_args
|
20 |
from internals.util.avatar import Avatar
|
|
|
42 |
high_res = HighRes()
|
43 |
img2text = Image2Text()
|
44 |
img_classifier = ImageClassifier()
|
45 |
+
replace_background = ReplaceBackground()
|
46 |
controlnet = ControlNet()
|
47 |
lora_style = LoraStyle()
|
48 |
text2img_pipe = Text2Img()
|
|
|
86 |
controlnet.load_canny()
|
87 |
|
88 |
# pipe2 is used for canny and pose
|
89 |
+
lora_patcher = lora_style.get_patcher(
|
90 |
+
[controlnet.pipe2, high_res.pipe], task.get_style()
|
91 |
+
)
|
92 |
lora_patcher.patch()
|
93 |
|
94 |
images, has_nsfw = controlnet.process_canny(
|
|
|
174 |
|
175 |
controlnet.load_scribble()
|
176 |
|
177 |
+
lora_patcher = lora_style.get_patcher(
|
178 |
+
[controlnet.pipe2, high_res.pipe], task.get_style()
|
179 |
+
)
|
180 |
lora_patcher.patch()
|
181 |
|
182 |
images, has_nsfw = controlnet.process_scribble(
|
|
|
220 |
|
221 |
controlnet.load_linearart()
|
222 |
|
223 |
+
lora_patcher = lora_style.get_patcher(
|
224 |
+
[controlnet.pipe2, high_res.pipe], task.get_style()
|
225 |
+
)
|
226 |
lora_patcher.patch()
|
227 |
|
228 |
images, has_nsfw = controlnet.process_linearart(
|
|
|
267 |
controlnet.load_pose()
|
268 |
|
269 |
# pipe2 is used for canny and pose
|
270 |
+
lora_patcher = lora_style.get_patcher(
|
271 |
+
[controlnet.pipe2, high_res.pipe], task.get_style()
|
272 |
+
)
|
273 |
lora_patcher.patch()
|
274 |
|
275 |
if not task.get_pose_estimation():
|
276 |
+
print("Not detecting pose")
|
277 |
pose = download_image(task.get_imageUrl()).resize(
|
278 |
(task.get_width(), task.get_height())
|
279 |
)
|
|
|
289 |
else:
|
290 |
poses = [controlnet.detect_pose(task.get_imageUrl())] * num_return_sequences
|
291 |
|
292 |
+
src_image = download_image(task.get_auxilary_imageUrl()).resize(
|
293 |
+
(task.get_width(), task.get_height())
|
294 |
+
)
|
295 |
+
condition_image = ControlNet.linearart_condition_image(src_image)
|
296 |
+
|
297 |
images, has_nsfw = controlnet.process_pose(
|
298 |
prompt=prompt,
|
299 |
image=poses,
|
300 |
+
condition_image=[condition_image] * num_return_sequences,
|
301 |
seed=task.get_seed(),
|
302 |
steps=task.get_steps(),
|
303 |
negative_prompt=[task.get_negative_prompt()] * num_return_sequences,
|
|
|
316 |
steps=task.get_steps(),
|
317 |
)
|
318 |
|
319 |
+
upload_image(poses[0], "crecoAI/{}_pose.png".format(task.get_taskId()))
|
320 |
+
upload_image(condition_image, "crecoAI/{}_condition.png".format(task.get_taskId()))
|
321 |
|
322 |
generated_image_urls = upload_images(images, s3_outkey, task.get_taskId())
|
323 |
|
|
|
339 |
|
340 |
width, height = get_intermediate_dimension(task)
|
341 |
|
342 |
+
lora_patcher = lora_style.get_patcher(
|
343 |
+
[text2img_pipe.pipe, high_res.pipe], task.get_style()
|
344 |
+
)
|
345 |
lora_patcher.patch()
|
346 |
|
347 |
torch.manual_seed(task.get_seed())
|
|
|
385 |
|
386 |
width, height = get_intermediate_dimension(task)
|
387 |
|
388 |
+
lora_patcher = lora_style.get_patcher(
|
389 |
+
[img2img_pipe.pipe, high_res.pipe], task.get_style()
|
390 |
+
)
|
391 |
lora_patcher.patch()
|
392 |
|
393 |
torch.manual_seed(task.get_seed())
|
|
|
448 |
return {"modified_prompts": prompt, "generated_image_urls": generated_image_urls}
|
449 |
|
450 |
|
451 |
+
@update_db
|
452 |
+
@slack.auto_send_alert
|
453 |
+
def replace_bg(task: Task):
|
454 |
+
prompt = task.get_prompt()
|
455 |
+
if task.is_prompt_engineering():
|
456 |
+
prompt = prompt_modifier.modify(prompt)
|
457 |
+
else:
|
458 |
+
prompt = [prompt] * num_return_sequences
|
459 |
+
|
460 |
+
lora_patcher = lora_style.get_patcher(replace_background.pipe, task.get_style())
|
461 |
+
lora_patcher.patch()
|
462 |
+
|
463 |
+
images, has_nsfw = replace_background.replace(
|
464 |
+
image=task.get_imageUrl(),
|
465 |
+
prompt=prompt,
|
466 |
+
negative_prompt=[task.get_negative_prompt()] * num_return_sequences,
|
467 |
+
seed=task.get_seed(),
|
468 |
+
width=task.get_width(),
|
469 |
+
height=task.get_height(),
|
470 |
+
steps=task.get_steps(),
|
471 |
+
resize_dimension=task.get_resize_dimension(),
|
472 |
+
product_scale_width=task.get_image_scale(),
|
473 |
+
conditioning_scale=task.rbg_controlnet_conditioning_scale(),
|
474 |
+
)
|
475 |
+
|
476 |
+
generated_image_urls = upload_images(images, "_replace_bg", task.get_taskId())
|
477 |
+
|
478 |
+
lora_patcher.cleanup()
|
479 |
+
|
480 |
+
return {
|
481 |
+
"modified_prompts": prompt,
|
482 |
+
"generated_image_urls": generated_image_urls,
|
483 |
+
"has_nsfw": has_nsfw,
|
484 |
+
}
|
485 |
+
|
486 |
+
|
487 |
def load_model_by_task(task: Task):
|
488 |
if (
|
489 |
task.get_type()
|
|
|
501 |
|
502 |
safety_checker.apply(text2img_pipe)
|
503 |
safety_checker.apply(img2img_pipe)
|
504 |
+
elif task.get_type() == TaskType.REPLACE_BG:
|
505 |
+
replace_background.load(controlnet=controlnet)
|
506 |
else:
|
507 |
if task.get_type() == TaskType.TILE_UPSCALE:
|
508 |
controlnet.load_tile_upscaler()
|
|
|
581 |
return scribble(task)
|
582 |
elif task_type == TaskType.LINEARART:
|
583 |
return linearart(task)
|
584 |
+
elif task_type == TaskType.REPLACE_BG:
|
585 |
+
return replace_bg(task)
|
586 |
elif task_type == TaskType.SYSTEM_CMD:
|
587 |
os.system(task.get_prompt())
|
588 |
else:
|
internals/data/dataAccessor.py
CHANGED
@@ -70,8 +70,8 @@ def getStyles() -> Optional[Dict]:
|
|
70 |
except requests.exceptions.Timeout:
|
71 |
print("Request timed out while fetching styles")
|
72 |
except requests.exceptions.RequestException as e:
|
73 |
-
raise e
|
74 |
print(f"Error while fetching styles: {e}")
|
|
|
75 |
return None
|
76 |
|
77 |
|
|
|
70 |
except requests.exceptions.Timeout:
|
71 |
print("Request timed out while fetching styles")
|
72 |
except requests.exceptions.RequestException as e:
|
|
|
73 |
print(f"Error while fetching styles: {e}")
|
74 |
+
raise e
|
75 |
return None
|
76 |
|
77 |
|
internals/data/task.py
CHANGED
@@ -47,6 +47,9 @@ class Task:
|
|
47 |
def get_imageUrl(self) -> str:
|
48 |
return self.__data.get("imageUrl", None)
|
49 |
|
|
|
|
|
|
|
50 |
def get_prompt(self) -> str:
|
51 |
return self.__data.get("prompt", "")
|
52 |
|
|
|
47 |
def get_imageUrl(self) -> str:
|
48 |
return self.__data.get("imageUrl", None)
|
49 |
|
50 |
+
def get_auxilary_imageUrl(self) -> str:
|
51 |
+
return self.__data.get("aux_imageUrl", None)
|
52 |
+
|
53 |
def get_prompt(self) -> str:
|
54 |
return self.__data.get("prompt", "")
|
55 |
|
internals/pipelines/controlnets.py
CHANGED
@@ -4,17 +4,27 @@ import cv2
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
from controlnet_aux import HEDdetector, LineartDetector, OpenposeDetector
|
7 |
-
from diffusers import (
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
from PIL import Image
|
11 |
from torch.nn import Linear
|
12 |
from tqdm import gui
|
|
|
13 |
|
|
|
|
|
14 |
from internals.data.result import Result
|
15 |
from internals.pipelines.commons import AbstractPipeline
|
16 |
-
from internals.pipelines.tileUpscalePipeline import
|
17 |
-
StableDiffusionControlNetImg2ImgPipeline
|
|
|
18 |
from internals.util.cache import clear_cuda_and_gc
|
19 |
from internals.util.commons import download_image
|
20 |
from internals.util.config import get_hf_cache_dir, get_hf_token, get_model_dir
|
@@ -25,10 +35,11 @@ class ControlNet(AbstractPipeline):
|
|
25 |
__loaded = False
|
26 |
|
27 |
def load(self):
|
|
|
28 |
if self.__loaded:
|
29 |
return
|
30 |
|
31 |
-
if not self
|
32 |
self.load_pose()
|
33 |
|
34 |
# controlnet pipeline for tile upscaler
|
@@ -79,15 +90,20 @@ class ControlNet(AbstractPipeline):
|
|
79 |
torch_dtype=torch.float16,
|
80 |
cache_dir=get_hf_cache_dir(),
|
81 |
).to("cuda")
|
|
|
|
|
|
|
|
|
|
|
82 |
self.__current_task_name = "pose"
|
83 |
-
self.controlnet = pose
|
84 |
|
85 |
self.load()
|
86 |
|
87 |
if hasattr(self, "pipe"):
|
88 |
-
self.pipe.controlnet =
|
89 |
if hasattr(self, "pipe2"):
|
90 |
-
self.pipe2.controlnet =
|
91 |
clear_cuda_and_gc()
|
92 |
|
93 |
def load_tile_upscaler(self):
|
@@ -195,6 +211,7 @@ class ControlNet(AbstractPipeline):
|
|
195 |
self,
|
196 |
prompt: List[str],
|
197 |
image: List[Image.Image],
|
|
|
198 |
seed: int,
|
199 |
steps: int,
|
200 |
guidance_scale: float,
|
@@ -208,14 +225,15 @@ class ControlNet(AbstractPipeline):
|
|
208 |
torch.manual_seed(seed)
|
209 |
|
210 |
result = self.pipe2.__call__(
|
211 |
-
prompt=prompt,
|
212 |
-
image=image,
|
213 |
-
num_images_per_prompt=
|
214 |
num_inference_steps=steps,
|
215 |
-
negative_prompt=negative_prompt,
|
216 |
guidance_scale=guidance_scale,
|
217 |
height=height,
|
218 |
width=width,
|
|
|
219 |
)
|
220 |
return Result.from_result(result)
|
221 |
|
@@ -337,6 +355,15 @@ class ControlNet(AbstractPipeline):
|
|
337 |
image = processor.__call__(input_image=image)
|
338 |
return image
|
339 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
def __canny_detect_edge(self, image: Image.Image) -> Image.Image:
|
341 |
image_array = np.array(image)
|
342 |
|
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
from controlnet_aux import HEDdetector, LineartDetector, OpenposeDetector
|
7 |
+
from diffusers import (
|
8 |
+
ControlNetModel,
|
9 |
+
DiffusionPipeline,
|
10 |
+
StableDiffusionControlNetPipeline,
|
11 |
+
UniPCMultistepScheduler,
|
12 |
+
)
|
13 |
+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import (
|
14 |
+
MultiControlNetModel,
|
15 |
+
)
|
16 |
from PIL import Image
|
17 |
from torch.nn import Linear
|
18 |
from tqdm import gui
|
19 |
+
from transformers import pipeline
|
20 |
|
21 |
+
import internals.util.image as ImageUtil
|
22 |
+
from external.midas import apply_midas
|
23 |
from internals.data.result import Result
|
24 |
from internals.pipelines.commons import AbstractPipeline
|
25 |
+
from internals.pipelines.tileUpscalePipeline import (
|
26 |
+
StableDiffusionControlNetImg2ImgPipeline,
|
27 |
+
)
|
28 |
from internals.util.cache import clear_cuda_and_gc
|
29 |
from internals.util.commons import download_image
|
30 |
from internals.util.config import get_hf_cache_dir, get_hf_token, get_model_dir
|
|
|
35 |
__loaded = False
|
36 |
|
37 |
def load(self):
|
38 |
+
"Should not be called externally"
|
39 |
if self.__loaded:
|
40 |
return
|
41 |
|
42 |
+
if not hasattr(self, "controlnet"):
|
43 |
self.load_pose()
|
44 |
|
45 |
# controlnet pipeline for tile upscaler
|
|
|
90 |
torch_dtype=torch.float16,
|
91 |
cache_dir=get_hf_cache_dir(),
|
92 |
).to("cuda")
|
93 |
+
# lineart = ControlNetModel.from_pretrained(
|
94 |
+
# "ControlNet-1-1-preview/control_v11p_sd15_lineart",
|
95 |
+
# torch_dtype=torch.float16,
|
96 |
+
# cache_dir=get_hf_cache_dir(),
|
97 |
+
# ).to("cuda")
|
98 |
self.__current_task_name = "pose"
|
99 |
+
self.controlnet = MultiControlNetModel([pose]).to("cuda")
|
100 |
|
101 |
self.load()
|
102 |
|
103 |
if hasattr(self, "pipe"):
|
104 |
+
self.pipe.controlnet = self.controlnet
|
105 |
if hasattr(self, "pipe2"):
|
106 |
+
self.pipe2.controlnet = self.controlnet
|
107 |
clear_cuda_and_gc()
|
108 |
|
109 |
def load_tile_upscaler(self):
|
|
|
211 |
self,
|
212 |
prompt: List[str],
|
213 |
image: List[Image.Image],
|
214 |
+
condition_image: List[Image.Image],
|
215 |
seed: int,
|
216 |
steps: int,
|
217 |
guidance_scale: float,
|
|
|
225 |
torch.manual_seed(seed)
|
226 |
|
227 |
result = self.pipe2.__call__(
|
228 |
+
prompt=prompt[0],
|
229 |
+
image=[image[0]],
|
230 |
+
num_images_per_prompt=4,
|
231 |
num_inference_steps=steps,
|
232 |
+
negative_prompt=negative_prompt[0],
|
233 |
guidance_scale=guidance_scale,
|
234 |
height=height,
|
235 |
width=width,
|
236 |
+
controlnet_conditioning_scale=[1.0],
|
237 |
)
|
238 |
return Result.from_result(result)
|
239 |
|
|
|
355 |
image = processor.__call__(input_image=image)
|
356 |
return image
|
357 |
|
358 |
+
@staticmethod
|
359 |
+
def depth_image(image: Image.Image) -> Image.Image:
|
360 |
+
depth = np.array(image)
|
361 |
+
depth = ImageUtil.HWC3(depth)
|
362 |
+
depth, _ = apply_midas(depth)
|
363 |
+
depth = ImageUtil.HWC3(depth)
|
364 |
+
depth = Image.fromarray(depth)
|
365 |
+
return depth
|
366 |
+
|
367 |
def __canny_detect_edge(self, image: Image.Image) -> Image.Image:
|
368 |
image_array = np.array(image)
|
369 |
|
internals/pipelines/remove_background.py
CHANGED
@@ -7,6 +7,7 @@ import torch.nn.functional as F
|
|
7 |
from PIL import Image
|
8 |
from rembg import remove
|
9 |
|
|
|
10 |
from carvekit.api.high import HiInterface
|
11 |
from internals.util.commons import download_image, read_url
|
12 |
|
@@ -40,6 +41,10 @@ class RemoveBackgroundV2:
|
|
40 |
if type(image) is str:
|
41 |
image = download_image(image)
|
42 |
|
|
|
|
|
|
|
|
|
43 |
image.save(img_path)
|
44 |
images_without_background = self.interface([img_path])
|
45 |
out = images_without_background[0]
|
|
|
7 |
from PIL import Image
|
8 |
from rembg import remove
|
9 |
|
10 |
+
import internals.util.image as ImageUtil
|
11 |
from carvekit.api.high import HiInterface
|
12 |
from internals.util.commons import download_image, read_url
|
13 |
|
|
|
41 |
if type(image) is str:
|
42 |
image = download_image(image)
|
43 |
|
44 |
+
w, h = image.size
|
45 |
+
if max(w, h) > 1536:
|
46 |
+
image = ImageUtil.resize_image(image, dimension=1024)
|
47 |
+
|
48 |
image.save(img_path)
|
49 |
images_without_background = self.interface([img_path])
|
50 |
out = images_without_background[0]
|
internals/pipelines/replace_background.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
from io import BytesIO
|
2 |
-
from typing import List, Union
|
3 |
|
4 |
import torch
|
5 |
from diffusers import (
|
@@ -17,31 +17,55 @@ from internals.pipelines.controlnets import ControlNet
|
|
17 |
from internals.pipelines.remove_background import RemoveBackgroundV2
|
18 |
from internals.pipelines.upscaler import Upscaler
|
19 |
from internals.util.commons import download_image
|
20 |
-
from internals.util.config import get_hf_cache_dir
|
21 |
|
22 |
|
23 |
class ReplaceBackground(AbstractPipeline):
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
"lllyasviel/control_v11p_sd15_lineart",
|
27 |
torch_dtype=torch.float16,
|
28 |
cache_dir=get_hf_cache_dir(),
|
29 |
).to("cuda")
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
37 |
pipe.to("cuda")
|
38 |
|
39 |
-
upscaler.load()
|
40 |
-
|
41 |
self.pipe = pipe
|
|
|
|
|
|
|
|
|
42 |
self.upscaler = upscaler
|
|
|
|
|
|
|
43 |
self.remove_background = remove_background
|
44 |
|
|
|
|
|
|
|
45 |
def replace(
|
46 |
self,
|
47 |
image: Union[str, Image.Image],
|
|
|
1 |
from io import BytesIO
|
2 |
+
from typing import List, Optional, Union
|
3 |
|
4 |
import torch
|
5 |
from diffusers import (
|
|
|
17 |
from internals.pipelines.remove_background import RemoveBackgroundV2
|
18 |
from internals.pipelines.upscaler import Upscaler
|
19 |
from internals.util.commons import download_image
|
20 |
+
from internals.util.config import get_hf_cache_dir, get_model_dir
|
21 |
|
22 |
|
23 |
class ReplaceBackground(AbstractPipeline):
|
24 |
+
__loaded = False
|
25 |
+
|
26 |
+
def load(
|
27 |
+
self,
|
28 |
+
upscaler: Optional[Upscaler] = None,
|
29 |
+
remove_background: Optional[RemoveBackgroundV2] = None,
|
30 |
+
controlnet: Optional[ControlNet] = None,
|
31 |
+
):
|
32 |
+
if self.__loaded:
|
33 |
+
return
|
34 |
+
controlnet_model = ControlNetModel.from_pretrained(
|
35 |
"lllyasviel/control_v11p_sd15_lineart",
|
36 |
torch_dtype=torch.float16,
|
37 |
cache_dir=get_hf_cache_dir(),
|
38 |
).to("cuda")
|
39 |
+
if controlnet:
|
40 |
+
controlnet.load_linearart()
|
41 |
+
pipe = StableDiffusionControlNetInpaintPipeline(
|
42 |
+
**controlnet.pipe.components
|
43 |
+
)
|
44 |
+
pipe.controlnet = controlnet_model
|
45 |
+
else:
|
46 |
+
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
47 |
+
get_model_dir(),
|
48 |
+
controlnet=controlnet_model,
|
49 |
+
torch_dtype=torch.float16,
|
50 |
+
cache_dir=get_hf_cache_dir(),
|
51 |
+
)
|
52 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
53 |
pipe.to("cuda")
|
54 |
|
|
|
|
|
55 |
self.pipe = pipe
|
56 |
+
if not upscaler:
|
57 |
+
upscaler = Upscaler()
|
58 |
+
|
59 |
+
upscaler.load()
|
60 |
self.upscaler = upscaler
|
61 |
+
|
62 |
+
if not remove_background:
|
63 |
+
remove_background = RemoveBackgroundV2()
|
64 |
self.remove_background = remove_background
|
65 |
|
66 |
+
self.__loaded = True
|
67 |
+
|
68 |
+
@torch.inference_mode()
|
69 |
def replace(
|
70 |
self,
|
71 |
image: Union[str, Image.Image],
|
internals/pipelines/upscaler.py
CHANGED
@@ -125,9 +125,10 @@ class Upscaler:
|
|
125 |
) -> bytes:
|
126 |
if type(image) is str:
|
127 |
image = download_image(image)
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
131 |
|
132 |
in_path = str(Path.home() / ".cache" / "input_upscale.png")
|
133 |
image.save(in_path)
|
|
|
125 |
) -> bytes:
|
126 |
if type(image) is str:
|
127 |
image = download_image(image)
|
128 |
+
|
129 |
+
w, h = image.size
|
130 |
+
if max(w, h) > 1536:
|
131 |
+
image = ImageUtil.resize_image(image, dimension=1024)
|
132 |
|
133 |
in_path = str(Path.home() / ".cache" / "input_upscale.png")
|
134 |
image.save(in_path)
|
internals/util/image.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import io
|
2 |
|
|
|
3 |
from PIL import Image
|
4 |
|
5 |
|
@@ -18,6 +19,26 @@ def resize_image(image: Image.Image, dimension: int = 512) -> Image.Image:
|
|
18 |
return image
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def from_bytes(data: bytes) -> Image.Image:
|
22 |
return Image.open(io.BytesIO(data))
|
23 |
|
|
|
1 |
import io
|
2 |
|
3 |
+
import numpy as np
|
4 |
from PIL import Image
|
5 |
|
6 |
|
|
|
19 |
return image
|
20 |
|
21 |
|
22 |
+
def HWC3(x):
|
23 |
+
"x: numpy array"
|
24 |
+
assert x.dtype == np.uint8
|
25 |
+
if x.ndim == 2:
|
26 |
+
x = x[:, :, None]
|
27 |
+
assert x.ndim == 3
|
28 |
+
H, W, C = x.shape
|
29 |
+
assert C == 1 or C == 3 or C == 4
|
30 |
+
if C == 3:
|
31 |
+
return x
|
32 |
+
if C == 1:
|
33 |
+
return np.concatenate([x, x, x], axis=2)
|
34 |
+
if C == 4:
|
35 |
+
color = x[:, :, 0:3].astype(np.float32)
|
36 |
+
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
37 |
+
y = color * alpha + 255.0 * (1.0 - alpha)
|
38 |
+
y = y.clip(0, 255).astype(np.uint8)
|
39 |
+
return y
|
40 |
+
|
41 |
+
|
42 |
def from_bytes(data: bytes) -> Image.Image:
|
43 |
return Image.open(io.BytesIO(data))
|
44 |
|
internals/util/lora_style.py
CHANGED
@@ -21,18 +21,26 @@ class LoraStyle:
|
|
21 |
|
22 |
@torch.inference_mode()
|
23 |
def patch(self):
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def kwargs(self):
|
31 |
return {}
|
32 |
|
33 |
def cleanup(self):
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
36 |
|
37 |
class LoraDiffuserPatcher:
|
38 |
def __init__(self, pipe, style: Dict[str, Any]):
|
@@ -41,16 +49,24 @@ class LoraStyle:
|
|
41 |
|
42 |
@torch.inference_mode()
|
43 |
def patch(self):
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
48 |
|
49 |
def kwargs(self):
|
50 |
return {}
|
51 |
|
52 |
def cleanup(self):
|
53 |
-
|
|
|
|
|
|
|
|
|
54 |
|
55 |
class EmptyLoraPatcher:
|
56 |
def __init__(self, pipe):
|
@@ -64,9 +80,13 @@ class LoraStyle:
|
|
64 |
return {}
|
65 |
|
66 |
def cleanup(self):
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
70 |
|
71 |
def load(self, model_dir: str):
|
72 |
self.model = model_dir
|
@@ -77,8 +97,8 @@ class LoraStyle:
|
|
77 |
result = getStyles()
|
78 |
if result is not None:
|
79 |
self.__styles = self.__parse_styles(model_dir, result["data"])
|
80 |
-
|
81 |
-
|
82 |
self.__verify()
|
83 |
|
84 |
def prepend_style_to_prompt(self, prompt: str, key: str) -> str:
|
@@ -88,8 +108,10 @@ class LoraStyle:
|
|
88 |
return prompt
|
89 |
|
90 |
def get_patcher(
|
91 |
-
self, pipe, key: str
|
92 |
) -> Union[LoraPatcher, LoraDiffuserPatcher, EmptyLoraPatcher]:
|
|
|
|
|
93 |
if key in self.__styles:
|
94 |
style = self.__styles[key]
|
95 |
if style["type"] == "diffuser":
|
@@ -119,49 +141,8 @@ class LoraStyle:
|
|
119 |
"text": attr["text"],
|
120 |
"negativePrompt": attr["negativePrompt"],
|
121 |
}
|
122 |
-
if len(styles) == 0:
|
123 |
-
return self.__get_default_styles(model_dir)
|
124 |
return styles
|
125 |
|
126 |
-
def __get_default_styles(self, model_dir: str) -> Dict:
|
127 |
-
return {
|
128 |
-
"nq6akX1CIp": {
|
129 |
-
"path": model_dir + "/laur_style/nq6akX1CIp/final_lora.safetensors",
|
130 |
-
"text": ["nq6akX1CIp style"],
|
131 |
-
"weight": 0.5,
|
132 |
-
"negativePrompt": [""],
|
133 |
-
"type": "custom",
|
134 |
-
},
|
135 |
-
"ghibli": {
|
136 |
-
"path": model_dir + "/laur_style/nq6akX1CIp/ghibli.bin",
|
137 |
-
"text": ["ghibli style"],
|
138 |
-
"weight": 1,
|
139 |
-
"negativePrompt": [""],
|
140 |
-
"type": "custom",
|
141 |
-
},
|
142 |
-
"eQAmnK2kB2": {
|
143 |
-
"path": model_dir + "/laur_style/eQAmnK2kB2/final_lora.safetensors",
|
144 |
-
"text": ["eQAmnK2kB2 style"],
|
145 |
-
"weight": 0.5,
|
146 |
-
"negativePrompt": [""],
|
147 |
-
"type": "custom",
|
148 |
-
},
|
149 |
-
"to8contrast": {
|
150 |
-
"path": model_dir + "/laur_style/rpjgusOgqD/final_lora.bin",
|
151 |
-
"text": ["to8contrast style"],
|
152 |
-
"weight": 0.5,
|
153 |
-
"negativePrompt": [""],
|
154 |
-
"type": "custom",
|
155 |
-
},
|
156 |
-
"sfrrfz8vge": {
|
157 |
-
"path": model_dir + "/laur_style/replicate/sfrrfz8vge.safetensors",
|
158 |
-
"text": ["sfrrfz8vge style"],
|
159 |
-
"weight": 1.2,
|
160 |
-
"negativePrompt": [""],
|
161 |
-
"type": "custom",
|
162 |
-
},
|
163 |
-
}
|
164 |
-
|
165 |
def __verify(self):
|
166 |
"A method to verify if lora exists within the required path otherwise throw error"
|
167 |
|
|
|
21 |
|
22 |
@torch.inference_mode()
|
23 |
def patch(self):
|
24 |
+
def run(pipe):
|
25 |
+
path = self.__style["path"]
|
26 |
+
if str(path).endswith((".pt", ".safetensors")):
|
27 |
+
patch_pipe(pipe, self.__style["path"])
|
28 |
+
tune_lora_scale(pipe.unet, self.__style["weight"])
|
29 |
+
tune_lora_scale(pipe.text_encoder, self.__style["weight"])
|
30 |
+
|
31 |
+
for p in self.pipe:
|
32 |
+
run(p)
|
33 |
|
34 |
def kwargs(self):
|
35 |
return {}
|
36 |
|
37 |
def cleanup(self):
|
38 |
+
def run(pipe):
|
39 |
+
tune_lora_scale(pipe.unet, 0.0)
|
40 |
+
tune_lora_scale(pipe.text_encoder, 0.0)
|
41 |
+
|
42 |
+
for p in self.pipe:
|
43 |
+
run(p)
|
44 |
|
45 |
class LoraDiffuserPatcher:
|
46 |
def __init__(self, pipe, style: Dict[str, Any]):
|
|
|
49 |
|
50 |
@torch.inference_mode()
|
51 |
def patch(self):
|
52 |
+
def run(pipe):
|
53 |
+
path = self.__style["path"]
|
54 |
+
pipe.load_lora_weights(
|
55 |
+
os.path.dirname(path), weight_name=os.path.basename(path)
|
56 |
+
)
|
57 |
+
|
58 |
+
for p in self.pipe:
|
59 |
+
run(p)
|
60 |
|
61 |
def kwargs(self):
|
62 |
return {}
|
63 |
|
64 |
def cleanup(self):
|
65 |
+
def run(pipe):
|
66 |
+
LoraStyle.unload_lora_weights(pipe)
|
67 |
+
|
68 |
+
for p in self.pipe:
|
69 |
+
run(p)
|
70 |
|
71 |
class EmptyLoraPatcher:
|
72 |
def __init__(self, pipe):
|
|
|
80 |
return {}
|
81 |
|
82 |
def cleanup(self):
|
83 |
+
def run(pipe):
|
84 |
+
tune_lora_scale(pipe.unet, 0.0)
|
85 |
+
tune_lora_scale(pipe.text_encoder, 0.0)
|
86 |
+
LoraStyle.unload_lora_weights(pipe)
|
87 |
+
|
88 |
+
for p in self.pipe:
|
89 |
+
run(p)
|
90 |
|
91 |
def load(self, model_dir: str):
|
92 |
self.model = model_dir
|
|
|
97 |
result = getStyles()
|
98 |
if result is not None:
|
99 |
self.__styles = self.__parse_styles(model_dir, result["data"])
|
100 |
+
if len(self.__styles) == 0:
|
101 |
+
print("Warning: No styles found for Model")
|
102 |
self.__verify()
|
103 |
|
104 |
def prepend_style_to_prompt(self, prompt: str, key: str) -> str:
|
|
|
108 |
return prompt
|
109 |
|
110 |
def get_patcher(
|
111 |
+
self, pipe: Union[Any, List], key: str
|
112 |
) -> Union[LoraPatcher, LoraDiffuserPatcher, EmptyLoraPatcher]:
|
113 |
+
"Returns a lora patcher for the given `key` and `pipe`. `pipe` can also be a list of pipes"
|
114 |
+
pipe = [pipe] if not isinstance(pipe, list) else pipe
|
115 |
if key in self.__styles:
|
116 |
style = self.__styles[key]
|
117 |
if style["type"] == "diffuser":
|
|
|
141 |
"text": attr["text"],
|
142 |
"negativePrompt": attr["negativePrompt"],
|
143 |
}
|
|
|
|
|
144 |
return styles
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
def __verify(self):
|
147 |
"A method to verify if lora exists within the required path otherwise throw error"
|
148 |
|
pyproject.toml
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
[tool.pyright]
|
2 |
-
venvPath = "
|
3 |
venv = "env"
|
4 |
-
exclude = "env"
|
|
|
1 |
[tool.pyright]
|
2 |
+
venvPath = "/Users/devel/Documents/WebProjects/creco-inference"
|
3 |
venv = "env"
|
4 |
+
exclude = ["env"]
|