File size: 10,549 Bytes
f26170f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---

# yelpreview_base

This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. 
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. 

## Usage 

To use this model, please install BERTopic:

```
pip install -U bertopic
```

You can use the model as follows:

```python
from bertopic import BERTopic
topic_model = BERTopic.load("Ayomidedeji/yelpreview_base")

topic_model.get_topic_info()
```

## Topic overview

* Number of topics: 98
* Number of training documents: 10000

<details>
  <summary>Click here for an overview of all topics.</summary>
  
  | Topic ID | Topic Keywords | Topic Frequency | Label | 
|----------|----------------|-----------------|-------| 
| -1 | food - good - place - great - like | 10 | -1_food_good_place_great | 
| 0 | mexican - tacos - salsa - burrito - food | 3827 | 0_mexican_tacos_salsa_burrito | 
| 1 | pizza - crust - pizzas - good - wait | 705 | 1_pizza_crust_pizzas_good | 
| 2 | bar - music - drinks - night - place | 393 | 2_bar_music_drinks_night | 
| 3 | burger - fries - burgers - good - like | 288 | 3_burger_fries_burgers_good | 
| 4 | ordered - just - bread - good - chicken | 275 | 4_ordered_just_bread_good | 
| 5 | sushi - roll - rolls - happy hour - happy | 261 | 5_sushi_roll_rolls_happy hour | 
| 6 | scottsdale - place - great - bar - food | 191 | 6_scottsdale_place_great_bar | 
| 7 | coffee - starbucks - coffee shop - shop - espresso | 190 | 7_coffee_starbucks_coffee shop_shop | 
| 8 | hotel - pool - room - stay - resort | 186 | 8_hotel_pool_room_stay | 
| 9 | minutes - table - server - asked - came | 183 | 9_minutes_table_server_asked | 
| 10 | chinese - chinese food - food - asian - china | 145 | 10_chinese_chinese food_food_asian | 
| 11 | thai - pad - curry - pad thai - thai food | 131 | 11_thai_pad_curry_pad thai | 
| 12 | beer - beers - peaks - brewery - craft | 131 | 12_beer_beers_peaks_brewery | 
| 13 | breakfast - eggs - pancakes - toast - french toast | 115 | 13_breakfast_eggs_pancakes_toast | 
| 14 | pho - vietnamese - spring rolls - spring - broth | 104 | 14_pho_vietnamese_spring rolls_spring | 
| 15 | bbq - brisket - ribs - sauce - pork | 94 | 15_bbq_brisket_ribs_sauce | 
| 16 | theater - movie - seats - movies - theaters | 84 | 16_theater_movie_seats_movies | 
| 17 | food - place - great - lunch - love | 82 | 17_food_place_great_lunch | 
| 18 | hair - cut - salon - haircut - barber | 81 | 18_hair_cut_salon_haircut | 
| 19 | great - valentine - food - patio - valentine day | 78 | 19_great_valentine_food_patio | 
| 20 | service - food - server - servers - food service | 71 | 20_service_food_server_servers | 
| 21 | clothes - shoes - store - nordstrom - pair | 69 | 21_clothes_shoes_store_nordstrom | 
| 22 | gym - classes - yoga - fitness - workout | 67 | 22_gym_classes_yoga_fitness | 
| 23 | phoenix - food - durant - restaurant - good | 66 | 23_phoenix_food_durant_restaurant | 
| 24 | italian - pasta - italian food - restaurant - best | 65 | 24_italian_pasta_italian food_restaurant | 
| 25 | sandwich - sandwiches - bread - sacks - al | 64 | 25_sandwich_sandwiches_bread_sacks | 
| 26 | airport - flight - terminal - sky harbor - harbor | 64 | 26_airport_flight_terminal_sky harbor | 
| 27 | yogurt - frozen yogurt - flavors - frozen - toppings | 64 | 27_yogurt_frozen yogurt_flavors_frozen | 
| 28 | nails - nail - manicure - pedicure - gel | 62 | 28_nails_nail_manicure_pedicure | 
| 29 | car - auto - warranty - repair - new | 61 | 29_car_auto_warranty_repair | 
| 30 | trail - hike - park - mountain - view | 60 | 30_trail_hike_park_mountain | 
| 31 | dr - doctor - office - care - doctors | 58 | 31_dr_doctor_office_care | 
| 32 | ice - ice cream - cream - flavors - custard | 56 | 32_ice_ice cream_cream_flavors | 
| 33 | cupcakes - cupcake - cake - frosting - sprinkles | 54 | 33_cupcakes_cupcake_cake_frosting | 
| 34 | wine - wines - total wine - daniel - bottle | 51 | 34_wine_wines_total wine_daniel | 
| 35 | vegan - vegetarian - meat - mock - green | 45 | 35_vegan_vegetarian_meat_mock | 
| 36 | stars - christopher - star - reason - pat | 45 | 36_stars_christopher_star_reason | 
| 37 | staff - love place - food - great - friendly | 45 | 37_staff_love place_food_great | 
| 38 | stadium - game - spring training - parking - spring | 44 | 38_stadium_game_spring training_parking | 
| 39 | sub - subway - subs - jimmy - sandwich | 44 | 39_sub_subway_subs_jimmy | 
| 40 | indian - indian food - buffet - india - masala | 43 | 40_indian_indian food_buffet_india | 
| 41 | museum - kids - art - exhibits - exhibit | 40 | 41_museum_kids_art_exhibits | 
| 42 | donuts - donut - dunkin - bosa - dunkin donuts | 40 | 42_donuts_donut_dunkin_bosa | 
| 43 | fez - yelp - yelp event - event - yoli | 39 | 43_fez_yelp_yelp event_event | 
| 44 | vet - dog - animals - pet - dogs | 35 | 44_vet_dog_animals_pet | 
| 45 | happy hour - happy - hour - great happy - great | 35 | 45_happy hour_happy_hour_great happy | 
| 46 | steak - steaks - steakhouse - good steak - sides | 34 | 46_steak_steaks_steakhouse_good steak | 
| 47 | mall - stores - malls - shopping - food court | 33 | 47_mall_stores_malls_shopping | 
| 48 | phone - store - iphone - camera - customer | 33 | 48_phone_store_iphone_camera | 
| 49 | massage - spa - therapist - room - massages | 33 | 49_massage_spa_therapist_room | 
| 50 | dog - dogs - hot dog - hot - beef | 33 | 50_dog_dogs_hot dog_hot | 
| 51 | dog - pet - dog food - treats - pets | 32 | 51_dog_pet_dog food_treats | 
| 52 | closed - location closed - open - closed good - business closed | 29 | 52_closed_location closed_open_closed good | 
| 53 | dentist - dr - dental - teeth - office | 29 | 53_dentist_dr_dental_teeth | 
| 54 | salad - lunch - sandwich - chicken - dressing | 29 | 54_salad_lunch_sandwich_chicken | 
| 55 | greek - greek food - pita - gyro - greek restaurant | 27 | 55_greek_greek food_pita_gyro | 
| 56 | waffles - lo - chicken waffles - chicken - lolo | 27 | 56_waffles_lo_chicken waffles_chicken | 
| 57 | car - wash - car wash - job - exterior | 27 | 57_car_wash_car wash_job | 
| 58 | gelato - angel sweet - angel - italy - flavors | 27 | 58_gelato_angel sweet_angel_italy | 
| 59 | wings - wing - love wings - wild wings - buffalo | 26 | 59_wings_wing_love wings_wild wings | 
| 60 | tea - boba - teas - drink - milk tea | 25 | 60_tea_boba_teas_drink | 
| 61 | food - service - great food - great - awesome food | 25 | 61_food_service_great food_great | 
| 62 | bagel - bagels - cream cheese - lox - cream | 25 | 62_bagel_bagels_cream cheese_lox | 
| 63 | bruschetta - postino - wine - postinos - bottle | 24 | 63_bruschetta_postino_wine_postinos | 
| 64 | review - stars - reviews - hotdog - mold | 24 | 64_review_stars_reviews_hotdog | 
| 65 | foods - fresh easy - trader - easy - grocery | 22 | 65_foods_fresh easy_trader_easy | 
| 66 | mongolian - mongolian bbq - yc - bowl - bbq | 22 | 66_mongolian_mongolian bbq_yc_bowl | 
| 67 | service - food - time - horrible - ordered | 22 | 67_service_food_time_horrible | 
| 68 | course - holes - courses - played - tee | 21 | 68_course_holes_courses_played | 
| 69 | dog - dogs - park - dog park - active | 21 | 69_dog_dogs_park_dog park | 
| 70 | books - book - library - bookstore - used books | 21 | 70_books_book_library_bookstore | 
| 71 | pita - pita jungle - jungle - hummus - lentil | 20 | 71_pita_pita jungle_jungle_hummus | 
| 72 | pasta - spaghetti - sauce - italian - bread | 20 | 72_pasta_spaghetti_sauce_italian | 
| 73 | store - office max - prices - max - office | 20 | 73_store_office max_prices_max | 
| 74 | expensive - good price - food - price - good food | 19 | 74_expensive_good price_food_price | 
| 75 | thrift - store - goodwill - thrift store - vintage | 19 | 75_thrift_store_goodwill_thrift store | 
| 76 | safeway - store - grocery - shopping - winco | 19 | 76_safeway_store_grocery_shopping | 
| 77 | beer - bar - asked - minutes - trout | 18 | 77_beer_bar_asked_minutes | 
| 78 | japanese - tokyo - japanese food - knife - knives | 18 | 78_japanese_tokyo_japanese food_knife | 
| 79 | irish - pub - irish pub - fish chips - guinness | 16 | 79_irish_pub_irish pub_fish chips | 
| 80 | works meh - friendly awesome - ing great - awesome intense - job super | 16 | 80_works meh_friendly awesome_ing great_awesome intense | 
| 81 | zia - record - cd - stinkweeds - music | 15 | 81_zia_record_cd_stinkweeds | 
| 82 | tires - tire - discount tire - discount - new tires | 14 | 82_tires_tire_discount tire_discount | 
| 83 | cheesesteak - wiz - cheesesteaks - forefathers - philly | 14 | 83_cheesesteak_wiz_cheesesteaks_forefathers | 
| 84 | korean - korean food - kimchi - bbq - dishes | 14 | 84_korean_korean food_kimchi_bbq | 
| 85 | buffet - buffets - sushi - hong - hong kong | 13 | 85_buffet_buffets_sushi_hong | 
| 86 | gyro - tzatziki - pita - gyros - meat | 13 | 86_gyro_tzatziki_pita_gyros | 
| 87 | classes - campus - school - teacher - students | 13 | 87_classes_campus_school_teacher | 
| 88 | romantic - love love - whinings excellent - whinings - live amazing | 13 | 88_romantic_love love_whinings excellent_whinings | 
| 89 | patio - service - excellent service - excellent - great service | 12 | 89_patio_service_excellent service_excellent | 
| 90 | staff - clean staff - clean - selection awesome - friendly | 12 | 90_staff_clean staff_clean_selection awesome | 
| 91 | lux - coffee - espresso - love space - surfing | 12 | 91_lux_coffee_espresso_love space | 
| 92 | wine - bottle - glass - bar - maybe | 12 | 92_wine_bottle_glass_bar | 
| 93 | sushi - roll - ra - sushi bar - seated | 12 | 93_sushi_roll_ra_sushi bar | 
| 94 | german - schnitzel - murphy - german food - haus | 12 | 94_german_schnitzel_murphy_german food | 
| 95 | ethiopian - lalibela - injera - watt - lentils | 11 | 95_ethiopian_lalibela_injera_watt | 
| 96 | store - items - michaels - susan - employee | 11 | 96_store_items_michaels_susan |
  
</details>

## Training hyperparameters

* calculate_probabilities: True
* language: english
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: True
* zeroshot_min_similarity: 0.7
* zeroshot_topic_list: None

## Framework versions

* Numpy: 1.25.2
* HDBSCAN: 0.8.36
* UMAP: 0.5.6
* Pandas: 2.0.3
* Scikit-Learn: 1.2.2
* Sentence-transformers: 3.0.0
* Transformers: 4.41.1
* Numba: 0.58.1
* Plotly: 5.15.0
* Python: 3.10.12