--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - AyoubChLin/autotrain-data-albert-bbc-news co2_eq_emissions: emissions: 13.344689233410659 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 48939118438 - CO2 Emissions (in grams): 13.3447 ## Validation Metrics - Loss: 0.103 - Accuracy: 0.978 - Macro F1: 0.978 - Micro F1: 0.978 - Weighted F1: 0.978 - Macro Precision: 0.977 - Micro Precision: 0.978 - Weighted Precision: 0.978 - Macro Recall: 0.978 - Micro Recall: 0.978 - Weighted Recall: 0.978 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/AyoubChLin/autotrain-albert-bbc-news-48939118438 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("AyoubChLin/autotrain-albert-bbc-news-48939118438", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("AyoubChLin/autotrain-albert-bbc-news-48939118438", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```