{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "4b07db50", "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 16, "id": "0e46369a", "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "id": "604cc2e1", "metadata": {}, "outputs": [], "source": [ "data={\n", " \"x1\":[2.5,0.5,2.2,1.9,3.1,2.3,2.0,1.0,1.5,1.1],\n", " \"x2\":[2.4,0.7,2.9,2.2,3.0,2.7,1.6,1.1,1.6,0.9]\n", "}" ] }, { "cell_type": "code", "execution_count": 3, "id": "580be2ef", "metadata": {}, "outputs": [], "source": [ "df=pd.DataFrame(data)" ] }, { "cell_type": "code", "execution_count": 4, "id": "af756531", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | x1 | \n", "x2 | \n", "
---|---|---|
0 | \n", "2.5 | \n", "2.4 | \n", "
1 | \n", "0.5 | \n", "0.7 | \n", "
2 | \n", "2.2 | \n", "2.9 | \n", "
3 | \n", "1.9 | \n", "2.2 | \n", "
4 | \n", "3.1 | \n", "3.0 | \n", "
5 | \n", "2.3 | \n", "2.7 | \n", "
6 | \n", "2.0 | \n", "1.6 | \n", "
7 | \n", "1.0 | \n", "1.1 | \n", "
8 | \n", "1.5 | \n", "1.6 | \n", "
9 | \n", "1.1 | \n", "0.9 | \n", "