diff --git "a/pca practice and T-SNE.ipynb" "b/pca practice and T-SNE.ipynb"
new file mode 100644--- /dev/null
+++ "b/pca practice and T-SNE.ipynb"
@@ -0,0 +1,3572 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "0713720f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "308ed275",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "d0=pd.read_csv(\"train.csv\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "f66c5ca7",
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " label | \n",
+ " pixel0 | \n",
+ " pixel1 | \n",
+ " pixel2 | \n",
+ " pixel3 | \n",
+ " pixel4 | \n",
+ " pixel5 | \n",
+ " pixel6 | \n",
+ " pixel7 | \n",
+ " pixel8 | \n",
+ " ... | \n",
+ " pixel774 | \n",
+ " pixel775 | \n",
+ " pixel776 | \n",
+ " pixel777 | \n",
+ " pixel778 | \n",
+ " pixel779 | \n",
+ " pixel780 | \n",
+ " pixel781 | \n",
+ " pixel782 | \n",
+ " pixel783 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 785 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " label pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 \\\n",
+ "0 1 0 0 0 0 0 0 0 0 \n",
+ "1 0 0 0 0 0 0 0 0 0 \n",
+ "2 1 0 0 0 0 0 0 0 0 \n",
+ "3 4 0 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 0 0 0 0 \n",
+ "\n",
+ " pixel8 ... pixel774 pixel775 pixel776 pixel777 pixel778 pixel779 \\\n",
+ "0 0 ... 0 0 0 0 0 0 \n",
+ "1 0 ... 0 0 0 0 0 0 \n",
+ "2 0 ... 0 0 0 0 0 0 \n",
+ "3 0 ... 0 0 0 0 0 0 \n",
+ "4 0 ... 0 0 0 0 0 0 \n",
+ "\n",
+ " pixel780 pixel781 pixel782 pixel783 \n",
+ "0 0 0 0 0 \n",
+ "1 0 0 0 0 \n",
+ "2 0 0 0 0 \n",
+ "3 0 0 0 0 \n",
+ "4 0 0 0 0 \n",
+ "\n",
+ "[5 rows x 785 columns]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "d0.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "08a64546",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(42000, 785)"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "d0.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "876cf7bd",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df=d0.drop(\"label\",axis=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "0724ad9c",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(42000, 785)"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "d0.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "1f248295",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "l=d0[\"label\"]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "8f6f9596",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(42000,)"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "l.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "bb6f7276",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#after droping the label column:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "2d320aee",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(42000, 784)"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "3fa60053",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " pixel0 | \n",
+ " pixel1 | \n",
+ " pixel2 | \n",
+ " pixel3 | \n",
+ " pixel4 | \n",
+ " pixel5 | \n",
+ " pixel6 | \n",
+ " pixel7 | \n",
+ " pixel8 | \n",
+ " pixel9 | \n",
+ " ... | \n",
+ " pixel774 | \n",
+ " pixel775 | \n",
+ " pixel776 | \n",
+ " pixel777 | \n",
+ " pixel778 | \n",
+ " pixel779 | \n",
+ " pixel780 | \n",
+ " pixel781 | \n",
+ " pixel782 | \n",
+ " pixel783 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 784 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 \\\n",
+ "0 0 0 0 0 0 0 0 0 0 \n",
+ "1 0 0 0 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 0 0 0 0 \n",
+ "\n",
+ " pixel9 ... pixel774 pixel775 pixel776 pixel777 pixel778 pixel779 \\\n",
+ "0 0 ... 0 0 0 0 0 0 \n",
+ "1 0 ... 0 0 0 0 0 0 \n",
+ "2 0 ... 0 0 0 0 0 0 \n",
+ "3 0 ... 0 0 0 0 0 0 \n",
+ "4 0 ... 0 0 0 0 0 0 \n",
+ "\n",
+ " pixel780 pixel781 pixel782 pixel783 \n",
+ "0 0 0 0 0 \n",
+ "1 0 0 0 0 \n",
+ "2 0 0 0 0 \n",
+ "3 0 0 0 0 \n",
+ "4 0 0 0 0 \n",
+ "\n",
+ "[5 rows x 784 columns]"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "ca353ffb",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#taking some of the data to train:\n",
+ "data=df.head(20000)\n",
+ "label=l.head(20000)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "f5bf0629",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(20000, 784)\n",
+ "(20000,)\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(data.shape)\n",
+ "print(label.shape)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "0b9cc18a",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 20000 entries, 0 to 19999\n",
+ "Columns: 784 entries, pixel0 to pixel783\n",
+ "dtypes: int64(784)\n",
+ "memory usage: 119.6 MB\n"
+ ]
+ }
+ ],
+ "source": [
+ "data.info()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "13574fd3",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 20000 entries, 0 to 19999\n",
+ "Series name: label\n",
+ "Non-Null Count Dtype\n",
+ "-------------- -----\n",
+ "20000 non-null int64\n",
+ "dtypes: int64(1)\n",
+ "memory usage: 156.4 KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "label.info()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "f435f9ed",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#visualizartion technique:\n",
+ "#importing the matplot lib and to pyplot:\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "bc9b9f68",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(20000, 784)"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#we have to take sample data from the bunch of data to reprasention and an tooo analysing:\n",
+ "#and this the data that we have to work for now to train and and to analyze the result:\n",
+ "data.shape"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fd22d944",
+ "metadata": {},
+ "source": [
+ "# applying the PCA"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "31a088cb",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#we take the sample data 20K fro our analysis: "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "b5d76cc3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#data preprocessing - STANDERDISE the data :\n",
+ "#importing the preprocessing.stdScaler class from the sklearn laibrary:\n",
+ "from sklearn.preprocessing import StandardScaler\n",
+ "std_data = StandardScaler().fit_transform(data)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "50768fcf",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(20000, 784)"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#here we will chekc the shape o fthe standerdized data:\n",
+ "std_data.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "79a53cce",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#now we will compute the co-variance matrix on the std_data:\n",
+ "\n",
+ "import numpy as np\n",
+ "\n",
+ "co_data=np.matmul(std_data.T,std_data)\n",
+ "\n",
+ "\n",
+ "#here the data is tranposes and computing the covariamnce to the original data:\n",
+ "#from this we canget the samples for our result:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "d87fa010",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[0., 0., 0., ..., 0., 0., 0.],\n",
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
+ " ...,\n",
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
+ " [0., 0., 0., ..., 0., 0., 0.],\n",
+ " [0., 0., 0., ..., 0., 0., 0.]])"
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "co_data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "a1dbb55b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(784, 784)"
+ ]
+ },
+ "execution_count": 23,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "co_data.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "id": "a5a9f531",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#from the co_data we can do cumpute on the eigan values and the eigan vectors:\n",
+ "from scipy.linalg import eigh\n",
+ "value,vector=eigh(co_data,eigvals=(782,783))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "id": "3a175908",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([581382.27258531, 801125.51413557])"
+ ]
+ },
+ "execution_count": 25,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "value"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "1436a2c1",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[0., 0.],\n",
+ " [0., 0.],\n",
+ " [0., 0.],\n",
+ " ...,\n",
+ " [0., 0.],\n",
+ " [0., 0.],\n",
+ " [0., 0.]])"
+ ]
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "vector"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "id": "afb310ca",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "vector=vector.T\n",
+ "#transpose the matrix(vector):"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "id": "a45ed57e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[0., 0., 0., ..., 0., 0., 0.],\n",
+ " [0., 0., 0., ..., 0., 0., 0.]])"
+ ]
+ },
+ "execution_count": 28,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "vector"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "id": "d942edf9",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(2, 784)"
+ ]
+ },
+ "execution_count": 29,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "vector.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "id": "a3de69eb",
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
+ " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
+ " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
+ " -6.15249962e-04, -6.15249962e-04, 5.55111512e-17, -4.44089210e-16,\n",
+ " -5.55111512e-17, -3.33066907e-16, 2.22044605e-16, -3.88578059e-16,\n",
+ " -3.33066907e-16, 1.66533454e-16, 2.77555756e-17, 3.46944695e-18,\n",
+ " -8.67361738e-19, 2.16840434e-19, 0.00000000e+00, -6.77626358e-21,\n",
+ " 0.00000000e+00, 0.00000000e+00, 2.64697796e-23, -6.61744490e-24,\n",
+ " 0.00000000e+00, -1.03397577e-25, -1.91955760e-03, -2.99767822e-03,\n",
+ " -5.03706105e-03, -5.28779177e-03, -4.66155023e-03, -4.71765308e-03,\n",
+ " -3.61087525e-03, -2.25152154e-03, -1.90405735e-03, -5.82346326e-04,\n",
+ " 7.82928817e-04, 1.94627578e-03, 2.62620424e-03, 2.63941016e-03,\n",
+ " 2.04268225e-03, 2.12183474e-03, 2.12669824e-03, 2.80259693e-45,\n",
+ " -1.75162308e-46, -1.09476443e-47, 0.00000000e+00, -1.71056941e-49,\n",
+ " 4.54370001e-50, 3.72516581e-50, 6.01284801e-04, 7.70573205e-51,\n",
+ " -1.13890605e-03, 5.58085202e-04, -4.73444286e-03, -7.33078273e-03,\n",
+ " -9.24526043e-03, -1.00373453e-02, -1.01142087e-02, -1.04442334e-02,\n",
+ " -8.93770072e-03, -4.99558907e-03, -1.62561588e-04, 5.46588637e-03,\n",
+ " 1.06553731e-02, 1.45352414e-02, 1.76066179e-02, 1.86461470e-02,\n",
+ " 1.70192636e-02, 1.39876768e-02, 1.07989806e-02, 7.20738832e-03,\n",
+ " 4.83195789e-03, 2.90644568e-03, -4.49955359e-51, 6.26058017e-50,\n",
+ " -2.88902883e-50, 3.37496697e-50, 6.01284801e-04, 2.88100342e-03,\n",
+ " 2.39096521e-03, -1.44112863e-03, -5.62505689e-03, -8.81317521e-03,\n",
+ " -1.09408402e-02, -1.11734007e-02, -1.02356048e-02, -7.81729344e-03,\n",
+ " -2.72446666e-03, 3.51742313e-03, 1.09999834e-02, 2.01364314e-02,\n",
+ " 2.92431597e-02, 3.53357510e-02, 3.77609933e-02, 3.70405988e-02,\n",
+ " 3.34562321e-02, 2.69204147e-02, 2.05219611e-02, 1.46937859e-02,\n",
+ " 1.04994499e-02, 6.10406010e-03, 2.20453963e-03, -6.18217840e-50,\n",
+ " 9.95103940e-50, 5.88162288e-50, -2.58978796e-51, 2.84633947e-03,\n",
+ " -2.86646515e-03, -7.73410246e-03, -1.22443607e-02, -1.59525792e-02,\n",
+ " -1.82309748e-02, -1.89263547e-02, -1.76272124e-02, -1.31060118e-02,\n",
+ " -5.49029988e-03, 5.98749593e-03, 2.19901042e-02, 4.02957019e-02,\n",
+ " 5.61693511e-02, 6.78117699e-02, 7.24104309e-02, 6.99729585e-02,\n",
+ " 6.10920741e-02, 4.96674634e-02, 3.74030287e-02, 2.58318570e-02,\n",
+ " 1.86580672e-02, 1.09126631e-02, 4.04083891e-03, -7.51052842e-50,\n",
+ " 8.66683305e-51, 1.82272988e-50, 1.46383180e-03, -2.05404870e-03,\n",
+ " -1.15679975e-02, -1.93671881e-02, -2.81555143e-02, -3.36652588e-02,\n",
+ " -3.76334743e-02, -4.03488375e-02, -3.84837402e-02, -3.23046442e-02,\n",
+ " -2.03861456e-02, -1.66375215e-03, 2.03948808e-02, 4.36389030e-02,\n",
+ " 6.28730548e-02, 7.64618580e-02, 8.39532581e-02, 8.47471522e-02,\n",
+ " 7.77920681e-02, 6.60803073e-02, 5.13972033e-02, 3.55759959e-02,\n",
+ " 2.46481496e-02, 1.36936206e-02, 5.27534562e-03, 8.17524438e-04,\n",
+ " 1.84952339e-51, -4.95521137e-51, -6.90757101e-03, -1.28291084e-02,\n",
+ " -2.32329494e-02, -3.60797812e-02, -4.79748722e-02, -5.53975674e-02,\n",
+ " -6.13794940e-02, -6.39262447e-02, -6.04843583e-02, -4.86873889e-02,\n",
+ " -2.93612545e-02, -5.87402254e-03, 1.70054470e-02, 3.71364017e-02,\n",
+ " 5.06812658e-02, 6.22141221e-02, 7.14942429e-02, 7.89154180e-02,\n",
+ " 7.94340318e-02, 7.36251071e-02, 5.90068633e-02, 4.27872230e-02,\n",
+ " 2.86397829e-02, 1.66810892e-02, 7.00900207e-03, 1.52248435e-03,\n",
+ " -7.42859157e-50, -4.73770354e-03, -1.47866233e-02, -2.44255941e-02,\n",
+ " -3.91764311e-02, -5.45648451e-02, -7.02630440e-02, -8.00981783e-02,\n",
+ " -8.78238835e-02, -8.85093226e-02, -7.83599056e-02, -5.78214465e-02,\n",
+ " -3.20433996e-02, -7.04597052e-03, 1.00018730e-02, 1.74792473e-02,\n",
+ " 1.89158080e-02, 2.43820242e-02, 3.62722991e-02, 5.30451800e-02,\n",
+ " 6.61135939e-02, 7.05968885e-02, 6.22909501e-02, 4.71425743e-02,\n",
+ " 3.05853384e-02, 1.78839458e-02, 7.54427894e-03, 1.27617487e-03,\n",
+ " 3.80137579e-04, -1.13385194e-02, -2.27267311e-02, -3.67133226e-02,\n",
+ " -5.39346842e-02, -7.14241749e-02, -8.72583136e-02, -9.92927114e-02,\n",
+ " -1.06457296e-01, -1.01187598e-01, -8.02568369e-02, -4.77997976e-02,\n",
+ " -1.40349108e-02, 5.32703511e-03, 9.06256968e-03, 6.05513826e-04,\n",
+ " -1.19783149e-02, -1.58607382e-02, -2.07287269e-03, 2.19745463e-02,\n",
+ " 4.48817053e-02, 5.80076578e-02, 5.80798116e-02, 4.60356831e-02,\n",
+ " 3.07762079e-02, 1.77291876e-02, 7.30072094e-03, 1.37208444e-03,\n",
+ " -4.64037625e-03, -1.29249530e-02, -2.64887601e-02, -4.17722993e-02,\n",
+ " -5.93807644e-02, -7.89149435e-02, -9.69622893e-02, -1.09281324e-01,\n",
+ " -1.11396763e-01, -9.60165835e-02, -6.05616690e-02, -1.78761532e-02,\n",
+ " 1.48784144e-02, 2.47996346e-02, 1.63746125e-02, -1.48385469e-03,\n",
+ " -2.40150768e-02, -3.52642763e-02, -2.41521996e-02, -2.99936859e-04,\n",
+ " 2.59019773e-02, 4.28149761e-02, 4.77845722e-02, 4.05546140e-02,\n",
+ " 2.77903189e-02, 1.48815222e-02, 5.79064731e-03, 1.15707560e-03,\n",
+ " -4.64037625e-03, -1.19564316e-02, -2.63713572e-02, -4.03401855e-02,\n",
+ " -5.80156201e-02, -7.92507584e-02, -9.74680516e-02, -1.06966386e-01,\n",
+ " -1.01402280e-01, -7.34035652e-02, -2.70435371e-02, 1.81629047e-02,\n",
+ " 4.13937642e-02, 3.95396160e-02, 2.28585103e-02, 9.27705765e-04,\n",
+ " -2.34830872e-02, -3.88932876e-02, -3.26433693e-02, -1.19649992e-02,\n",
+ " 1.23276738e-02, 2.87750872e-02, 3.33383710e-02, 3.10565604e-02,\n",
+ " 2.10873750e-02, 1.07059804e-02, 4.31511304e-03, 1.37411193e-03,\n",
+ " -4.64037625e-03, -9.50361224e-03, -2.21978275e-02, -3.44433753e-02,\n",
+ " -5.32423681e-02, -7.46350068e-02, -9.01529707e-02, -9.50866677e-02,\n",
+ " -8.08368009e-02, -4.35626300e-02, 5.72776418e-03, 4.28806834e-02,\n",
+ " 5.30399817e-02, 4.14648535e-02, 2.30119822e-02, 3.79437895e-03,\n",
+ " -1.89024841e-02, -3.50665796e-02, -3.35913366e-02, -1.78454240e-02,\n",
+ " 3.08233029e-03, 1.62632759e-02, 2.05389010e-02, 1.84970397e-02,\n",
+ " 1.36882128e-02, 4.10327693e-03, 2.16742404e-03, 9.99955205e-04,\n",
+ " -1.88767997e-50, -5.84424567e-03, -1.78001319e-02, -2.78685078e-02,\n",
+ " -4.74258132e-02, -6.67551465e-02, -7.78289638e-02, -7.78826232e-02,\n",
+ " -5.78034872e-02, -1.92640383e-02, 2.28314586e-02, 4.61351103e-02,\n",
+ " 4.56567269e-02, 3.39518640e-02, 2.09941819e-02, 6.68517865e-03,\n",
+ " -1.42857664e-02, -3.20919659e-02, -3.36878676e-02, -2.12805033e-02,\n",
+ " -3.12956298e-03, 9.08277252e-03, 1.18182071e-02, 7.03023913e-03,\n",
+ " 4.45710327e-03, -7.01764044e-04, 6.49466857e-04, -2.84876554e-04,\n",
+ " -7.03351859e-51, -4.11707477e-03, -1.32236271e-02, -2.41380490e-02,\n",
+ " -4.04296253e-02, -5.44895734e-02, -6.20935369e-02, -5.80298419e-02,\n",
+ " -3.86400593e-02, -6.83879406e-03, 2.22196329e-02, 3.30615612e-02,\n",
+ " 2.95254733e-02, 2.57377768e-02, 2.01145161e-02, 9.37848776e-03,\n",
+ " -1.25644753e-02, -3.32782754e-02, -3.56291089e-02, -2.26912810e-02,\n",
+ " -4.50378776e-03, 5.41162265e-03, 3.98014889e-03, -3.01811092e-03,\n",
+ " -5.60986769e-03, -4.48907947e-03, 8.68207697e-05, -2.84876554e-04,\n",
+ " 7.44643946e-50, -1.66227337e-50, -1.01160264e-02, -2.04677415e-02,\n",
+ " -3.02770249e-02, -3.91505282e-02, -4.26600912e-02, -3.84037773e-02,\n",
+ " -2.42014289e-02, -4.10744639e-03, 1.17896178e-02, 1.65781992e-02,\n",
+ " 1.70266903e-02, 2.05778342e-02, 1.95153707e-02, 8.53496708e-03,\n",
+ " -1.87805690e-02, -3.88500381e-02, -3.72493241e-02, -2.16666810e-02,\n",
+ " -4.38328551e-03, 1.64532363e-03, -3.99259451e-03, -1.18230778e-02,\n",
+ " -1.46116114e-02, -7.84998477e-03, -1.06474962e-03, -7.60862991e-04,\n",
+ " -8.49254431e-51, 2.57887418e-50, 1.38730081e-03, -9.84338065e-03,\n",
+ " -1.47387388e-02, -1.66618823e-02, -1.81320339e-02, -1.58898844e-02,\n",
+ " -9.88560245e-03, -1.84107874e-03, 4.28674964e-03, 8.47537542e-03,\n",
+ " 1.49479715e-02, 2.09996082e-02, 2.11955283e-02, 4.86384247e-03,\n",
+ " -2.52708233e-02, -4.02275073e-02, -3.55918787e-02, -1.70636324e-02,\n",
+ " -4.41594940e-03, -3.43722624e-03, -1.27725634e-02, -1.96642505e-02,\n",
+ " -2.07325900e-02, -9.61900791e-03, -1.17258204e-03, -1.26724667e-03,\n",
+ " 2.99251201e-50, 6.47312614e-04, 4.47639601e-03, 2.40437219e-03,\n",
+ " 4.78450008e-03, 8.08429322e-03, 8.94667552e-03, 9.05697010e-03,\n",
+ " 8.86504637e-03, 7.78033814e-03, 7.92512146e-03, 1.17294319e-02,\n",
+ " 2.03407514e-02, 2.66049608e-02, 2.39607956e-02, 1.92608305e-03,\n",
+ " -2.54674416e-02, -3.62065092e-02, -2.72988907e-02, -9.59932088e-03,\n",
+ " -4.87566913e-03, -1.16843355e-02, -2.21913106e-02, -2.70807291e-02,\n",
+ " -2.36439841e-02, -9.82983678e-03, -1.74598873e-03, -4.47771031e-04,\n",
+ " 3.70756993e-50, 8.29183997e-04, 4.58621730e-03, 1.33087965e-02,\n",
+ " 2.50948986e-02, 3.19480002e-02, 3.34460866e-02, 3.17763209e-02,\n",
+ " 2.66848701e-02, 2.22497662e-02, 2.01637082e-02, 2.27944543e-02,\n",
+ " 2.94141966e-02, 3.40784696e-02, 2.70574287e-02, 4.85804226e-03,\n",
+ " -1.65468915e-02, -2.15870385e-02, -1.30188096e-02, -4.27552665e-03,\n",
+ " -1.03914228e-02, -2.34547498e-02, -3.23191270e-02, -3.27347501e-02,\n",
+ " -2.35189092e-02, -9.38431640e-03, -1.60672230e-03, 3.33184995e-04,\n",
+ " 7.97418219e-50, 8.21245276e-04, 6.70301515e-03, 2.11021875e-02,\n",
+ " 3.99546468e-02, 5.08596534e-02, 5.29776267e-02, 4.94809548e-02,\n",
+ " 4.18926373e-02, 3.57918983e-02, 3.31443515e-02, 3.44042179e-02,\n",
+ " 3.95402148e-02, 4.09480966e-02, 3.16943333e-02, 1.45904156e-02,\n",
+ " 4.59219130e-04, -4.61270119e-03, -4.25567430e-03, -8.93836711e-03,\n",
+ " -2.28248405e-02, -3.62881590e-02, -3.99839532e-02, -3.32012999e-02,\n",
+ " -2.00121636e-02, -8.04654092e-03, -1.27760383e-03, 3.84079090e-04,\n",
+ " 4.88204019e-50, 7.25987589e-04, 9.12956663e-03, 2.64459786e-02,\n",
+ " 4.96143529e-02, 6.39131457e-02, 6.68740483e-02, 6.40310898e-02,\n",
+ " 5.66517542e-02, 4.93659756e-02, 4.66589309e-02, 4.69826225e-02,\n",
+ " 5.08457257e-02, 5.06041497e-02, 4.15718590e-02, 2.67314310e-02,\n",
+ " 1.11039074e-02, -7.98160357e-04, -1.23847695e-02, -2.66363065e-02,\n",
+ " -4.01548750e-02, -4.58253950e-02, -4.20747535e-02, -2.99313290e-02,\n",
+ " -1.65012979e-02, -7.17146725e-03, -2.16259716e-03, 4.80336580e-04,\n",
+ " 6.24859662e-51, 6.43521570e-04, 1.04493272e-02, 2.89061995e-02,\n",
+ " 5.28592084e-02, 7.06038682e-02, 7.79098170e-02, 7.80899431e-02,\n",
+ " 7.16639278e-02, 6.63957133e-02, 6.27496990e-02, 6.21924936e-02,\n",
+ " 6.32390023e-02, 5.89696694e-02, 4.55818513e-02, 2.56390173e-02,\n",
+ " 2.26590057e-03, -1.96619570e-02, -3.73278627e-02, -5.03915174e-02,\n",
+ " -5.60980871e-02, -5.26428775e-02, -4.06346369e-02, -2.66246979e-02,\n",
+ " -1.40723860e-02, -6.42577909e-03, -2.27613688e-03, 1.24264678e-50,\n",
+ " 1.08301077e-03, -1.18191013e-04, 9.64132899e-03, 2.60152189e-02,\n",
+ " 4.83453278e-02, 6.89264482e-02, 8.15546757e-02, 8.59926356e-02,\n",
+ " 8.23943920e-02, 7.76966407e-02, 7.44358306e-02, 7.14021183e-02,\n",
+ " 6.65779237e-02, 5.31924111e-02, 2.97617451e-02, 1.00110353e-03,\n",
+ " -2.83052323e-02, -5.24334330e-02, -6.52872555e-02, -7.07242309e-02,\n",
+ " -6.65593988e-02, -5.46907312e-02, -3.83036794e-02, -2.43994591e-02,\n",
+ " -1.31142872e-02, -5.98196498e-03, -1.24857374e-03, -3.66798106e-50,\n",
+ " 1.08301077e-03, 1.08301077e-03, 6.12624325e-03, 1.83697606e-02,\n",
+ " 3.55559320e-02, 5.65887207e-02, 7.16669729e-02, 8.11952848e-02,\n",
+ " 8.11302219e-02, 7.64929438e-02, 6.92097165e-02, 5.93341596e-02,\n",
+ " 4.41324776e-02, 2.08278869e-02, -7.56735353e-03, -3.80254603e-02,\n",
+ " -6.38023682e-02, -8.06400142e-02, -8.54066365e-02, -8.22987835e-02,\n",
+ " -7.04555685e-02, -5.42763102e-02, -3.65054364e-02, -2.26528119e-02,\n",
+ " -1.17675476e-02, -4.61425076e-03, -8.36941109e-04, -8.55837884e-50,\n",
+ " -4.06093132e-50, 2.70758389e-50, 2.64860349e-03, 8.41310099e-03,\n",
+ " 1.84666998e-02, 3.39959755e-02, 4.89749447e-02, 6.08521015e-02,\n",
+ " 6.61576100e-02, 6.37420163e-02, 5.39786271e-02, 3.53693948e-02,\n",
+ " 9.56694240e-03, -1.87581768e-02, -4.71201013e-02, -7.01523889e-02,\n",
+ " -8.58300787e-02, -9.35901778e-02, -9.04641446e-02, -8.16161830e-02,\n",
+ " -6.68197638e-02, -4.99863874e-02, -3.38287900e-02, -1.94525041e-02,\n",
+ " -9.91054257e-03, -1.46907635e-03, -6.12486075e-04, -2.88392099e-50,\n",
+ " -5.93184032e-50, -2.17160306e-51, 1.26979545e-04, 1.50915743e-03,\n",
+ " 6.99555608e-03, 1.29832938e-02, 2.05664974e-02, 2.62904370e-02,\n",
+ " 2.94393799e-02, 2.80163631e-02, 1.87333886e-02, 7.08228546e-04,\n",
+ " -2.15026705e-02, -4.44093542e-02, -6.40654773e-02, -7.85172700e-02,\n",
+ " -8.49410010e-02, -8.53927459e-02, -7.77939584e-02, -6.95855660e-02,\n",
+ " -5.72436990e-02, -4.22440291e-02, -2.85360776e-02, -1.76625688e-02,\n",
+ " -8.22402350e-03, -2.64753675e-03, -1.01609878e-03, -3.53050115e-52,\n",
+ " 7.01456581e-50, 1.95629418e-50, -7.06127222e-04, -1.08882358e-03,\n",
+ " 1.61632449e-03, 4.99189508e-03, 7.65348133e-03, 8.64408678e-03,\n",
+ " 7.61211217e-03, 3.42651014e-03, -4.82184938e-03, -1.74826561e-02,\n",
+ " -3.21321335e-02, -4.57936200e-02, -5.62401833e-02, -6.26685552e-02,\n",
+ " -6.50039295e-02, -6.33574330e-02, -5.79183109e-02, -5.12649316e-02,\n",
+ " -4.11806985e-02, -2.92783863e-02, -2.02401514e-02, -1.23161319e-02,\n",
+ " -3.20939948e-03, -2.95395929e-03, -1.11438434e-03, -1.19292772e-51,\n",
+ " 4.98481347e-52, -2.01337127e-50, -8.86862536e-50, -8.74661309e-50,\n",
+ " 2.08726055e-03, 3.12396749e-03, 3.31002177e-03, 2.42804941e-03,\n",
+ " 6.04659469e-04, -3.86176080e-03, -1.11144393e-02, -1.96169730e-02,\n",
+ " -2.92025605e-02, -3.77091043e-02, -4.36592023e-02, -4.63089964e-02,\n",
+ " -4.65883395e-02, -4.40464657e-02, -3.97074413e-02, -3.48644049e-02,\n",
+ " -2.54952207e-02, -1.60526866e-02, -9.51688255e-03, -4.64250743e-03,\n",
+ " -4.37742959e-03, -7.59447297e-50, -6.12336748e-50, 6.52680680e-50,\n",
+ " -3.31078295e-50, 4.67758761e-51, -2.20625332e-50, 2.62663966e-50,\n",
+ " 7.04458213e-50, -4.34545346e-04, -4.86565396e-04, -4.55956121e-04,\n",
+ " -1.77185032e-03, -3.70368559e-03, -6.89536383e-03, -9.12287428e-03,\n",
+ " -1.22173972e-02, -1.64158359e-02, -2.01079179e-02, -2.19405053e-02,\n",
+ " -2.19181835e-02, -1.96411364e-02, -1.61387990e-02, -1.20006784e-02,\n",
+ " -8.47603777e-03, -5.89969965e-03, -5.25212111e-03, 0.00000000e+00,\n",
+ " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00])"
+ ]
+ },
+ "execution_count": 30,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "vector[0]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "id": "84f37cf9",
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
+ " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
+ " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
+ " 1.77505975e-04, 1.77505975e-04, -5.55111512e-17, 6.10622664e-16,\n",
+ " 2.22044605e-16, -1.11022302e-16, 5.55111512e-17, -2.77555756e-17,\n",
+ " -6.93889390e-18, 1.73472348e-18, 2.16840434e-19, 5.42101086e-20,\n",
+ " -3.38813179e-21, 8.47032947e-22, 0.00000000e+00, -1.32348898e-23,\n",
+ " 0.00000000e+00, 0.00000000e+00, 6.46234854e-27, -8.07793567e-28,\n",
+ " 0.00000000e+00, -2.52435490e-29, -9.42524031e-04, -1.81245995e-03,\n",
+ " -3.26403344e-03, -4.16811052e-03, -4.42579887e-03, -4.73469989e-03,\n",
+ " -4.19901121e-03, -3.23822180e-03, -3.25257085e-03, -1.81099133e-03,\n",
+ " -7.39498080e-04, 7.74260794e-05, -1.75372552e-04, -1.68946786e-04,\n",
+ " -1.40948241e-05, -1.46094245e-03, -1.76641321e-03, -1.44997486e-49,\n",
+ " -3.44953695e-50, -6.91068895e-50, -7.04588918e-50, 5.39384887e-49,\n",
+ " 1.73921335e-50, -1.13602687e-49, -8.43182491e-04, -2.74535769e-49,\n",
+ " -4.94738541e-04, -1.30721823e-03, -4.04246752e-03, -5.60983194e-03,\n",
+ " -8.11011456e-03, -1.03877478e-02, -1.15764923e-02, -1.30264342e-02,\n",
+ " -1.35133109e-02, -1.23290536e-02, -1.14078666e-02, -9.52157398e-03,\n",
+ " -8.02063412e-03, -6.27164486e-03, -4.71277005e-03, -4.27582224e-03,\n",
+ " -3.91162006e-03, -3.22549819e-03, -2.63336181e-03, -1.50526512e-03,\n",
+ " -5.81577759e-04, -2.42041708e-04, -8.16590556e-50, -4.18440363e-49,\n",
+ " -8.66193094e-50, -2.97098871e-49, -8.43182491e-04, -1.19046200e-03,\n",
+ " -2.76809539e-04, -3.64036621e-03, -5.45384224e-03, -9.10113607e-03,\n",
+ " -1.40253434e-02, -1.67627394e-02, -1.87133187e-02, -2.08277753e-02,\n",
+ " -2.21034629e-02, -2.22783827e-02, -2.24732728e-02, -2.08440165e-02,\n",
+ " -1.81758833e-02, -1.45075301e-02, -1.24535297e-02, -1.08178345e-02,\n",
+ " -9.02083357e-03, -6.85811509e-03, -5.40340768e-03, -2.92497518e-03,\n",
+ " -1.47078084e-03, -1.89732863e-04, 7.18980979e-04, -2.49763942e-49,\n",
+ " 1.71989809e-49, 7.73889103e-50, -1.31172246e-49, -2.60707392e-03,\n",
+ " -4.96314216e-03, -6.95975679e-03, -1.01204716e-02, -1.51225962e-02,\n",
+ " -2.08719351e-02, -2.55242140e-02, -2.95630029e-02, -3.21526601e-02,\n",
+ " -3.34964587e-02, -3.44918558e-02, -3.44071762e-02, -3.45853148e-02,\n",
+ " -3.45132397e-02, -3.23231784e-02, -2.91974025e-02, -2.49418765e-02,\n",
+ " -1.95584165e-02, -1.46964369e-02, -8.85532661e-03, -3.58497797e-03,\n",
+ " -1.33631687e-03, 8.42833380e-04, 9.15515935e-04, -5.65453853e-49,\n",
+ " 1.99024142e-49, 1.05926111e-49, 4.77705427e-04, -1.31026946e-03,\n",
+ " -5.85567269e-03, -1.00843526e-02, -1.44862732e-02, -2.11834699e-02,\n",
+ " -2.76336197e-02, -3.40517845e-02, -3.96560888e-02, -4.41413255e-02,\n",
+ " -4.58819073e-02, -4.51304878e-02, -4.45491700e-02, -4.32023529e-02,\n",
+ " -4.38582748e-02, -4.35920557e-02, -4.10401186e-02, -3.69647304e-02,\n",
+ " -3.17196691e-02, -2.32064073e-02, -1.43176342e-02, -6.06739535e-03,\n",
+ " -8.29954439e-04, 1.67892780e-03, 1.31906692e-03, 2.66465211e-04,\n",
+ " 7.08551331e-50, -3.48244434e-49, 6.21563098e-04, -1.90831666e-03,\n",
+ " -6.94413219e-03, -1.29622842e-02, -1.79692678e-02, -2.44082781e-02,\n",
+ " -3.18323933e-02, -4.05960321e-02, -4.77087337e-02, -5.27197537e-02,\n",
+ " -5.21878897e-02, -4.65311358e-02, -3.95610557e-02, -3.45504026e-02,\n",
+ " -3.51363722e-02, -3.89648005e-02, -4.32649877e-02, -4.53185043e-02,\n",
+ " -4.31485999e-02, -3.53122482e-02, -2.19001653e-02, -9.62062672e-03,\n",
+ " -5.51013778e-04, 2.96523140e-03, 2.57328542e-03, 8.88085609e-04,\n",
+ " 8.91367934e-51, 2.47337831e-04, 1.05644313e-03, -2.28402066e-04,\n",
+ " -4.92925671e-03, -1.07487625e-02, -1.63151623e-02, -2.47311763e-02,\n",
+ " -3.44283163e-02, -4.30195207e-02, -4.86815490e-02, -4.90995050e-02,\n",
+ " -4.21594353e-02, -2.99324356e-02, -1.78317839e-02, -9.89144550e-03,\n",
+ " -1.03100356e-02, -1.92561708e-02, -3.19672078e-02, -4.39295729e-02,\n",
+ " -5.02144477e-02, -4.67197797e-02, -3.30765269e-02, -1.44156543e-02,\n",
+ " -7.74955010e-04, 4.06034263e-03, 2.94284617e-03, 1.55457107e-03,\n",
+ " 5.62067910e-04, 2.80887507e-04, 1.81520775e-03, 1.42456461e-03,\n",
+ " -2.04674110e-03, -6.58166079e-03, -1.50746574e-02, -2.70272996e-02,\n",
+ " -3.75478098e-02, -4.28914961e-02, -4.18414178e-02, -3.56020078e-02,\n",
+ " -2.38254488e-02, -1.09778362e-02, 2.33845387e-03, 1.23213345e-02,\n",
+ " 1.32306761e-02, 2.45654375e-03, -1.66849059e-02, -3.73563343e-02,\n",
+ " -5.28843797e-02, -5.59121884e-02, -4.56769956e-02, -2.36282665e-02,\n",
+ " -2.92244109e-03, 4.56093303e-03, 3.05024848e-03, 1.72633836e-03,\n",
+ " 3.40995342e-04, 6.41253935e-04, 2.33034205e-03, 2.36058652e-03,\n",
+ " -5.40426290e-04, -6.71811533e-03, -2.12643635e-02, -3.50046269e-02,\n",
+ " -4.37661945e-02, -4.38895738e-02, -3.59305234e-02, -2.52682719e-02,\n",
+ " -1.38427024e-02, -1.10023198e-03, 1.46239134e-02, 2.67615561e-02,\n",
+ " 2.78746973e-02, 1.84830921e-02, -3.25760188e-03, -3.15386235e-02,\n",
+ " -5.49985054e-02, -6.62750950e-02, -6.21304221e-02, -4.01222292e-02,\n",
+ " -1.09207203e-02, 3.12172193e-03, 2.06733620e-03, 1.25048998e-03,\n",
+ " 3.40995342e-04, 7.36507580e-04, 2.08489229e-03, 1.54598118e-03,\n",
+ " -3.30598144e-03, -1.53025264e-02, -3.33348088e-02, -4.72391559e-02,\n",
+ " -5.22289352e-02, -4.54662592e-02, -3.32725603e-02, -2.16923046e-02,\n",
+ " -1.15126272e-02, 2.43786398e-03, 2.22068902e-02, 3.59508384e-02,\n",
+ " 3.65256010e-02, 2.75367281e-02, 3.62966592e-03, -2.98214465e-02,\n",
+ " -5.94472155e-02, -7.78469319e-02, -7.93503443e-02, -6.04074890e-02,\n",
+ " -2.61638392e-02, -5.67895801e-04, 1.08144445e-03, 1.21601055e-03,\n",
+ " 3.40995342e-04, 5.76912839e-04, 5.43675008e-04, -1.77873027e-03,\n",
+ " -8.87917820e-03, -2.84856231e-02, -4.88645937e-02, -6.03834884e-02,\n",
+ " -5.92754938e-02, -4.74255791e-02, -3.21296390e-02, -2.06876277e-02,\n",
+ " -1.05946254e-02, 6.35802753e-03, 2.84618193e-02, 3.91761505e-02,\n",
+ " 3.79559713e-02, 2.61008616e-02, 1.44083542e-03, -3.31438857e-02,\n",
+ " -6.56123603e-02, -8.92388582e-02, -9.28856824e-02, -7.65716805e-02,\n",
+ " -4.22594559e-02, -4.08041676e-03, 2.79843251e-04, 1.42653206e-03,\n",
+ " 3.02945511e-49, 3.29852520e-04, -5.64166446e-04, -4.25385168e-03,\n",
+ " -1.59850631e-02, -4.21205661e-02, -6.38922708e-02, -7.06547084e-02,\n",
+ " -6.37393761e-02, -4.70718736e-02, -2.90407469e-02, -1.65679210e-02,\n",
+ " -5.19171910e-03, 1.52841603e-02, 3.54498378e-02, 4.22015595e-02,\n",
+ " 3.65507943e-02, 1.90339676e-02, -8.62701451e-03, -4.16087936e-02,\n",
+ " -7.35683334e-02, -9.64390906e-02, -1.00936065e-01, -8.63796699e-02,\n",
+ " -5.19181277e-02, -7.91407109e-03, -7.04060004e-04, 3.85867260e-04,\n",
+ " 1.11653562e-49, 1.56214828e-04, -1.48161381e-03, -5.54954811e-03,\n",
+ " -2.35833601e-02, -5.62077357e-02, -7.46741399e-02, -7.80082821e-02,\n",
+ " -6.63111026e-02, -4.46397387e-02, -2.35315156e-02, -9.00782257e-03,\n",
+ " 4.17848302e-03, 2.78012252e-02, 4.31600536e-02, 4.78287697e-02,\n",
+ " 3.42697451e-02, 1.05348521e-02, -1.86425896e-02, -5.07917710e-02,\n",
+ " -7.98530511e-02, -9.93595554e-02, -1.03186322e-01, -8.92762779e-02,\n",
+ " -5.62742675e-02, -1.01402155e-02, 6.28181115e-04, 3.85867260e-04,\n",
+ " -4.81438678e-49, 1.84799751e-49, -2.30865972e-03, -7.41984542e-03,\n",
+ " -3.03731819e-02, -6.68942761e-02, -8.34141090e-02, -8.43020363e-02,\n",
+ " -6.79521058e-02, -4.21762732e-02, -1.74099644e-02, -9.67279205e-04,\n",
+ " 1.42003168e-02, 3.85090659e-02, 5.04643483e-02, 5.14667785e-02,\n",
+ " 3.06818228e-02, 5.71187199e-03, -2.38727870e-02, -5.56567970e-02,\n",
+ " -8.21378035e-02, -9.96539463e-02, -1.01572283e-01, -8.85829684e-02,\n",
+ " -5.74124324e-02, -1.37536473e-02, -3.76559464e-04, -6.36551696e-06,\n",
+ " 2.93258856e-49, 1.04684335e-49, -2.35956277e-03, -9.07758227e-03,\n",
+ " -3.82494528e-02, -7.59037894e-02, -9.18721913e-02, -9.10345052e-02,\n",
+ " -7.24298555e-02, -4.38702114e-02, -1.75995080e-02, 1.10250167e-03,\n",
+ " 1.93729587e-02, 4.13102905e-02, 5.21491213e-02, 5.01910890e-02,\n",
+ " 2.83416419e-02, 4.19239536e-03, -2.71033556e-02, -5.89515328e-02,\n",
+ " -8.44109831e-02, -9.97854026e-02, -9.98249307e-02, -8.57082319e-02,\n",
+ " -5.39114799e-02, -1.31628643e-02, -4.33658223e-04, -3.62681661e-05,\n",
+ " 1.74435053e-49, 2.50258715e-04, -2.64182895e-03, -1.08033804e-02,\n",
+ " -4.31055548e-02, -8.26063269e-02, -9.80469659e-02, -9.79096406e-02,\n",
+ " -7.87649794e-02, -4.92381180e-02, -2.24798756e-02, -2.03648998e-03,\n",
+ " 1.73163990e-02, 3.70363496e-02, 4.88272874e-02, 4.53404137e-02,\n",
+ " 2.57929883e-02, -6.25411388e-05, -3.40962928e-02, -6.55204552e-02,\n",
+ " -8.87843560e-02, -1.00207332e-01, -9.62445250e-02, -7.81107032e-02,\n",
+ " -4.63399062e-02, -1.13303440e-02, 1.32246828e-04, 3.30568111e-04,\n",
+ " -3.89732503e-49, 4.95907320e-04, -2.42926433e-03, -1.37293882e-02,\n",
+ " -4.64653646e-02, -8.45557383e-02, -1.00756895e-01, -1.01674673e-01,\n",
+ " -8.44942671e-02, -5.53027402e-02, -2.81896337e-02, -5.47582633e-03,\n",
+ " 1.43765533e-02, 3.29609071e-02, 4.34956813e-02, 3.79781095e-02,\n",
+ " 1.72558333e-02, -1.37621777e-02, -4.82142694e-02, -7.64730876e-02,\n",
+ " -9.47091999e-02, -9.97937494e-02, -9.07667930e-02, -6.83635184e-02,\n",
+ " -3.78072503e-02, -1.00323778e-02, -4.92754389e-04, 1.09108677e-03,\n",
+ " 3.46260290e-50, 1.72604321e-04, -2.84758133e-03, -1.60604308e-02,\n",
+ " -4.73302440e-02, -8.24666754e-02, -9.76331996e-02, -1.00235807e-01,\n",
+ " -8.55014793e-02, -5.92594302e-02, -3.26544145e-02, -9.21989283e-03,\n",
+ " 1.02301364e-02, 2.71096954e-02, 3.35299440e-02, 2.30349732e-02,\n",
+ " -2.06631386e-03, -3.47202239e-02, -6.57357739e-02, -8.70044384e-02,\n",
+ " -9.73791244e-02, -9.38281064e-02, -7.91056189e-02, -5.53538416e-02,\n",
+ " -2.78445599e-02, -8.16226690e-03, -2.94668797e-04, 1.61248142e-03,\n",
+ " -1.93543422e-49, 1.52099166e-04, -2.57087314e-03, -1.64781628e-02,\n",
+ " -4.45128859e-02, -7.58855518e-02, -9.13903418e-02, -9.55172266e-02,\n",
+ " -8.58090713e-02, -6.53576406e-02, -4.09554994e-02, -1.97722958e-02,\n",
+ " -1.74344665e-03, 1.20915887e-02, 1.50900590e-02, 2.12699524e-03,\n",
+ " -2.49104105e-02, -5.39591832e-02, -7.76598718e-02, -9.11488608e-02,\n",
+ " -9.23191607e-02, -8.27525614e-02, -6.41336711e-02, -4.16603606e-02,\n",
+ " -1.89769325e-02, -6.21861246e-03, -9.60941439e-04, 1.43153169e-03,\n",
+ " 3.43491426e-49, 1.95358763e-04, -2.70455832e-03, -1.40903260e-02,\n",
+ " -3.82841284e-02, -6.42023009e-02, -8.15754629e-02, -8.77920976e-02,\n",
+ " -8.46685809e-02, -7.19667381e-02, -5.34437764e-02, -3.52355873e-02,\n",
+ " -1.93638172e-02, -7.29601628e-03, -6.37367403e-03, -1.94075602e-02,\n",
+ " -4.21672276e-02, -6.36959637e-02, -7.83634753e-02, -8.25213704e-02,\n",
+ " -7.75481158e-02, -6.44683641e-02, -4.66712555e-02, -2.86948024e-02,\n",
+ " -1.39588474e-02, -5.02384693e-03, -9.60800201e-04, 8.82067509e-50,\n",
+ " 1.47024560e-03, 8.22823241e-04, -2.74830396e-03, -1.08448626e-02,\n",
+ " -2.87928630e-02, -4.87571627e-02, -6.50157710e-02, -7.44323310e-02,\n",
+ " -7.56905955e-02, -7.00033459e-02, -5.91755278e-02, -4.49970311e-02,\n",
+ " -3.15937275e-02, -2.08651032e-02, -1.98291957e-02, -2.96526228e-02,\n",
+ " -4.42673969e-02, -5.76326508e-02, -6.39462010e-02, -6.33745930e-02,\n",
+ " -5.58831060e-02, -4.38105354e-02, -3.08128525e-02, -2.04751172e-02,\n",
+ " -1.09854011e-02, -3.72211084e-03, -5.07874202e-04, -7.53836201e-49,\n",
+ " 1.47024560e-03, 1.47024560e-03, -1.47149349e-03, -7.32124094e-03,\n",
+ " -1.75001104e-02, -3.15334943e-02, -4.38068689e-02, -5.21722053e-02,\n",
+ " -5.50798048e-02, -5.13952471e-02, -4.37751690e-02, -3.28535923e-02,\n",
+ " -2.19110122e-02, -1.42692270e-02, -1.24757672e-02, -1.82964496e-02,\n",
+ " -2.80439640e-02, -3.64896855e-02, -4.13459153e-02, -4.05255145e-02,\n",
+ " -3.37491146e-02, -2.63353620e-02, -2.01415581e-02, -1.42126465e-02,\n",
+ " -8.79015464e-03, -3.47315212e-03, -6.29952022e-04, -1.01957459e-49,\n",
+ " 2.94966644e-49, -1.34617968e-49, -7.35795577e-05, -2.92316627e-03,\n",
+ " -6.32702181e-03, -1.20475041e-02, -1.84515083e-02, -2.31912693e-02,\n",
+ " -2.45358279e-02, -2.14404936e-02, -1.52315596e-02, -8.38855737e-03,\n",
+ " -7.71566241e-04, 4.05473132e-03, 4.58277173e-03, 6.05925450e-04,\n",
+ " -6.61791917e-03, -1.26429011e-02, -1.75904624e-02, -1.86092174e-02,\n",
+ " -1.80936854e-02, -1.63924800e-02, -1.32265212e-02, -8.17363940e-03,\n",
+ " -4.80884517e-03, -1.17889112e-04, 8.09200003e-04, 3.23780374e-50,\n",
+ " -2.05854182e-49, 3.64989355e-49, 7.37494875e-05, -5.41581730e-04,\n",
+ " -8.22538102e-04, -1.73563303e-04, 2.43968337e-04, 1.18830276e-03,\n",
+ " 4.32477642e-03, 9.68416425e-03, 1.57295662e-02, 2.01928921e-02,\n",
+ " 2.41457043e-02, 2.40361763e-02, 2.15792670e-02, 1.65911423e-02,\n",
+ " 1.07963538e-02, 4.50556100e-03, -1.82081890e-03, -6.62058211e-03,\n",
+ " -1.00992194e-02, -9.75715539e-03, -8.11284833e-03, -5.24231401e-03,\n",
+ " -2.13774362e-03, 2.57708829e-04, 6.54490729e-04, 3.06420753e-49,\n",
+ " 4.84326935e-49, 1.68908599e-50, 1.09122578e-04, 2.32452388e-04,\n",
+ " 1.18852224e-03, 2.22137912e-03, 4.14530504e-03, 7.39386055e-03,\n",
+ " 1.20251124e-02, 1.73213469e-02, 2.30901147e-02, 2.84889736e-02,\n",
+ " 3.10031530e-02, 2.94513545e-02, 2.63767960e-02, 2.19858156e-02,\n",
+ " 1.63696140e-02, 1.03459498e-02, 4.05238714e-03, -4.65843709e-04,\n",
+ " -4.04173991e-03, -4.32221407e-03, -3.67356775e-03, -2.71944435e-03,\n",
+ " -1.09190003e-03, 3.01573300e-04, 4.40428596e-04, -7.49006312e-50,\n",
+ " 4.65704984e-50, 2.18297350e-49, -3.52513744e-49, -1.58050582e-49,\n",
+ " 1.49548504e-03, 1.82910415e-03, 3.20680453e-03, 5.28241190e-03,\n",
+ " 7.72044634e-03, 1.09725750e-02, 1.55568609e-02, 1.93382056e-02,\n",
+ " 2.11911393e-02, 1.97552119e-02, 1.69053536e-02, 1.41883772e-02,\n",
+ " 1.11740776e-02, 7.47255465e-03, 3.53431864e-03, 1.34960472e-04,\n",
+ " -1.69272076e-03, -1.48844415e-03, -6.86431962e-04, 1.91229798e-04,\n",
+ " -2.80661498e-04, -7.63516628e-50, -4.27927199e-49, 2.68228719e-49,\n",
+ " 1.57058444e-50, -1.70077015e-49, -1.41367382e-49, -1.30920271e-49,\n",
+ " 2.53732809e-49, 4.55984210e-04, 9.73248949e-04, 1.58867372e-03,\n",
+ " 1.40593258e-03, 1.90623575e-03, 4.23763016e-03, 4.65771701e-03,\n",
+ " 4.79939594e-03, 4.93293731e-03, 5.39699548e-03, 4.51771891e-03,\n",
+ " 2.78035778e-03, 1.53127348e-03, 6.95493664e-04, 5.31972584e-04,\n",
+ " 6.19149923e-04, 1.24334019e-04, 7.42072864e-05, 0.00000000e+00,\n",
+ " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00])"
+ ]
+ },
+ "execution_count": 31,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "vector[1]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "id": "03f7dd23",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "dtype('float64')"
+ ]
+ },
+ "execution_count": 32,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "vector.dtype"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "id": "f4180eef",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(2, 20000)"
+ ]
+ },
+ "execution_count": 33,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "new_cord=np.matmul(vector,std_data.T)\n",
+ "#here the eigan vector will computed with ethe std_data:\n",
+ "\n",
+ "new_cord.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "id": "da5ca35a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[ 5.43069721, -6.24299872, 1.82861099, ..., 5.46973995,\n",
+ " -16.30829738, -10.74668112],\n",
+ " [ 5.06086205, -19.29314824, 7.68449823, ..., 0.08480173,\n",
+ " -2.96182323, 5.19074485]])"
+ ]
+ },
+ "execution_count": 34,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "new_cord"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "id": "5e6de351",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[ 5.43069721 5.06086205]\n",
+ " [ -6.24299872 -19.29314824]\n",
+ " [ 1.82861099 7.68449823]\n",
+ " ...\n",
+ " [ 5.46973995 0.08480173]\n",
+ " [-16.30829738 -2.96182323]\n",
+ " [-10.74668112 5.19074485]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(new_cord.T)\n",
+ "new_coordinates = np.vstack((new_coordinates, labels)).T\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "id": "df9bee54",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "new_cord2=np.vstack((new_cord,label)).T"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "id": "ebbcbbad",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[ 5.43069721, 5.06086205, 1. ],\n",
+ " [ -6.24299872, -19.29314824, 0. ],\n",
+ " [ 1.82861099, 7.68449823, 1. ],\n",
+ " ...,\n",
+ " [ 5.46973995, 0.08480173, 6. ],\n",
+ " [-16.30829738, -2.96182323, 8. ],\n",
+ " [-10.74668112, 5.19074485, 7. ]])"
+ ]
+ },
+ "execution_count": 41,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "new_cord2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "id": "78722b18",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(20000, 3)"
+ ]
+ },
+ "execution_count": 42,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "new_cord2.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "214a98a1",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7b49c8b0",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#creating new data frame for our good reference:\n",
+ "df=pd.DataFrame(new_cord2,columns=('1st principle','2nd principle','label'))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "id": "368a8734",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array('1st principle', dtype='\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | \n",
+ " pixel0 | \n",
+ " pixel1 | \n",
+ " pixel2 | \n",
+ " pixel3 | \n",
+ " pixel4 | \n",
+ " pixel5 | \n",
+ " pixel6 | \n",
+ " pixel7 | \n",
+ " pixel8 | \n",
+ " pixel9 | \n",
+ " ... | \n",
+ " pixel774 | \n",
+ " pixel775 | \n",
+ " pixel776 | \n",
+ " pixel777 | \n",
+ " pixel778 | \n",
+ " pixel779 | \n",
+ " pixel780 | \n",
+ " pixel781 | \n",
+ " pixel782 | \n",
+ " pixel783 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 30 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 31 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 32 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 33 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 34 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 35 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 36 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 37 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 38 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 39 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 40 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 41 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 42 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 43 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 44 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 45 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 46 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 47 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 48 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 49 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "50 rows × 784 columns
\n",
+ ""
+ ],
+ "text/plain": [
+ " pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 \\\n",
+ "0 0 0 0 0 0 0 0 0 0 \n",
+ "1 0 0 0 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 0 0 0 0 \n",
+ "5 0 0 0 0 0 0 0 0 0 \n",
+ "6 0 0 0 0 0 0 0 0 0 \n",
+ "7 0 0 0 0 0 0 0 0 0 \n",
+ "8 0 0 0 0 0 0 0 0 0 \n",
+ "9 0 0 0 0 0 0 0 0 0 \n",
+ "10 0 0 0 0 0 0 0 0 0 \n",
+ "11 0 0 0 0 0 0 0 0 0 \n",
+ "12 0 0 0 0 0 0 0 0 0 \n",
+ "13 0 0 0 0 0 0 0 0 0 \n",
+ "14 0 0 0 0 0 0 0 0 0 \n",
+ "15 0 0 0 0 0 0 0 0 0 \n",
+ "16 0 0 0 0 0 0 0 0 0 \n",
+ "17 0 0 0 0 0 0 0 0 0 \n",
+ "18 0 0 0 0 0 0 0 0 0 \n",
+ "19 0 0 0 0 0 0 0 0 0 \n",
+ "20 0 0 0 0 0 0 0 0 0 \n",
+ "21 0 0 0 0 0 0 0 0 0 \n",
+ "22 0 0 0 0 0 0 0 0 0 \n",
+ "23 0 0 0 0 0 0 0 0 0 \n",
+ "24 0 0 0 0 0 0 0 0 0 \n",
+ "25 0 0 0 0 0 0 0 0 0 \n",
+ "26 0 0 0 0 0 0 0 0 0 \n",
+ "27 0 0 0 0 0 0 0 0 0 \n",
+ "28 0 0 0 0 0 0 0 0 0 \n",
+ "29 0 0 0 0 0 0 0 0 0 \n",
+ "30 0 0 0 0 0 0 0 0 0 \n",
+ "31 0 0 0 0 0 0 0 0 0 \n",
+ "32 0 0 0 0 0 0 0 0 0 \n",
+ "33 0 0 0 0 0 0 0 0 0 \n",
+ "34 0 0 0 0 0 0 0 0 0 \n",
+ "35 0 0 0 0 0 0 0 0 0 \n",
+ "36 0 0 0 0 0 0 0 0 0 \n",
+ "37 0 0 0 0 0 0 0 0 0 \n",
+ "38 0 0 0 0 0 0 0 0 0 \n",
+ "39 0 0 0 0 0 0 0 0 0 \n",
+ "40 0 0 0 0 0 0 0 0 0 \n",
+ "41 0 0 0 0 0 0 0 0 0 \n",
+ "42 0 0 0 0 0 0 0 0 0 \n",
+ "43 0 0 0 0 0 0 0 0 0 \n",
+ "44 0 0 0 0 0 0 0 0 0 \n",
+ "45 0 0 0 0 0 0 0 0 0 \n",
+ "46 0 0 0 0 0 0 0 0 0 \n",
+ "47 0 0 0 0 0 0 0 0 0 \n",
+ "48 0 0 0 0 0 0 0 0 0 \n",
+ "49 0 0 0 0 0 0 0 0 0 \n",
+ "\n",
+ " pixel9 ... pixel774 pixel775 pixel776 pixel777 pixel778 pixel779 \\\n",
+ "0 0 ... 0 0 0 0 0 0 \n",
+ "1 0 ... 0 0 0 0 0 0 \n",
+ "2 0 ... 0 0 0 0 0 0 \n",
+ "3 0 ... 0 0 0 0 0 0 \n",
+ "4 0 ... 0 0 0 0 0 0 \n",
+ "5 0 ... 0 0 0 0 0 0 \n",
+ "6 0 ... 0 0 0 0 0 0 \n",
+ "7 0 ... 0 0 0 0 0 0 \n",
+ "8 0 ... 0 0 0 0 0 0 \n",
+ "9 0 ... 0 0 0 0 0 0 \n",
+ "10 0 ... 0 0 0 0 0 0 \n",
+ "11 0 ... 0 0 0 0 0 0 \n",
+ "12 0 ... 0 0 0 0 0 0 \n",
+ "13 0 ... 0 0 0 0 0 0 \n",
+ "14 0 ... 0 0 0 0 0 0 \n",
+ "15 0 ... 0 0 0 0 0 0 \n",
+ "16 0 ... 0 0 0 0 0 0 \n",
+ "17 0 ... 0 0 0 0 0 0 \n",
+ "18 0 ... 0 0 0 0 0 0 \n",
+ "19 0 ... 0 0 0 0 0 0 \n",
+ "20 0 ... 0 0 0 0 0 0 \n",
+ "21 0 ... 0 0 0 0 0 0 \n",
+ "22 0 ... 0 0 0 0 0 0 \n",
+ "23 0 ... 0 0 0 0 0 0 \n",
+ "24 0 ... 0 0 0 0 0 0 \n",
+ "25 0 ... 0 0 0 0 0 0 \n",
+ "26 0 ... 0 0 0 0 0 0 \n",
+ "27 0 ... 0 0 0 0 0 0 \n",
+ "28 0 ... 0 0 0 0 0 0 \n",
+ "29 0 ... 0 0 0 0 0 0 \n",
+ "30 0 ... 0 0 0 0 0 0 \n",
+ "31 0 ... 0 0 0 0 0 0 \n",
+ "32 0 ... 0 0 0 0 0 0 \n",
+ "33 0 ... 0 0 0 0 0 0 \n",
+ "34 0 ... 0 0 0 0 0 0 \n",
+ "35 0 ... 0 0 0 0 0 0 \n",
+ "36 0 ... 0 0 0 0 0 0 \n",
+ "37 0 ... 0 0 0 0 0 0 \n",
+ "38 0 ... 0 0 0 0 0 0 \n",
+ "39 0 ... 0 0 0 0 0 0 \n",
+ "40 0 ... 0 0 0 0 0 0 \n",
+ "41 0 ... 0 0 0 0 0 0 \n",
+ "42 0 ... 0 0 0 0 0 0 \n",
+ "43 0 ... 0 0 0 0 0 0 \n",
+ "44 0 ... 0 0 0 0 0 0 \n",
+ "45 0 ... 0 0 0 0 0 0 \n",
+ "46 0 ... 0 0 0 0 0 0 \n",
+ "47 0 ... 0 0 0 0 0 0 \n",
+ "48 0 ... 0 0 0 0 0 0 \n",
+ "49 0 ... 0 0 0 0 0 0 \n",
+ "\n",
+ " pixel780 pixel781 pixel782 pixel783 \n",
+ "0 0 0 0 0 \n",
+ "1 0 0 0 0 \n",
+ "2 0 0 0 0 \n",
+ "3 0 0 0 0 \n",
+ "4 0 0 0 0 \n",
+ "5 0 0 0 0 \n",
+ "6 0 0 0 0 \n",
+ "7 0 0 0 0 \n",
+ "8 0 0 0 0 \n",
+ "9 0 0 0 0 \n",
+ "10 0 0 0 0 \n",
+ "11 0 0 0 0 \n",
+ "12 0 0 0 0 \n",
+ "13 0 0 0 0 \n",
+ "14 0 0 0 0 \n",
+ "15 0 0 0 0 \n",
+ "16 0 0 0 0 \n",
+ "17 0 0 0 0 \n",
+ "18 0 0 0 0 \n",
+ "19 0 0 0 0 \n",
+ "20 0 0 0 0 \n",
+ "21 0 0 0 0 \n",
+ "22 0 0 0 0 \n",
+ "23 0 0 0 0 \n",
+ "24 0 0 0 0 \n",
+ "25 0 0 0 0 \n",
+ "26 0 0 0 0 \n",
+ "27 0 0 0 0 \n",
+ "28 0 0 0 0 \n",
+ "29 0 0 0 0 \n",
+ "30 0 0 0 0 \n",
+ "31 0 0 0 0 \n",
+ "32 0 0 0 0 \n",
+ "33 0 0 0 0 \n",
+ "34 0 0 0 0 \n",
+ "35 0 0 0 0 \n",
+ "36 0 0 0 0 \n",
+ "37 0 0 0 0 \n",
+ "38 0 0 0 0 \n",
+ "39 0 0 0 0 \n",
+ "40 0 0 0 0 \n",
+ "41 0 0 0 0 \n",
+ "42 0 0 0 0 \n",
+ "43 0 0 0 0 \n",
+ "44 0 0 0 0 \n",
+ "45 0 0 0 0 \n",
+ "46 0 0 0 0 \n",
+ "47 0 0 0 0 \n",
+ "48 0 0 0 0 \n",
+ "49 0 0 0 0 \n",
+ "\n",
+ "[50 rows x 784 columns]"
+ ]
+ },
+ "execution_count": 45,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head(50)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "id": "fd30ac40",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import seaborn as sn"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 53,
+ "id": "e51e7d8f",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABl+klEQVR4nO19d5wcxZX/9/XEzXlXq12tMkISIIIQCAwGYwzGYOzDPuAc4IyNfcZnzue7A3w+h/OPczpj+84RY4zPAQMmY3JGCATKKOew0uYcJ3X9/pie3Z6eDtVppmfd389H2p7uqlev0quqV69eEWMMPnz48OFjZkEoNAM+fPjw4cN5+MLdhw8fPmYgfOHuw4cPHzMQvnD34cOHjxkIX7j78OHDxwxEsNAMAEB9fT2bN29eodnw4cOHj6LChg0behljDWrfPCHc582bh/Xr1xeaDR8+fPgoKhDRYa1vvlrGhw8fPmYgfOHuw4cPHzMQvnD34cOHjxkIX7j78OHDxwyEL9x9+PDhYwbCF+4+fPjwMQPhC3cfPnz4mIHwhJ27VQwfPIh7/usnGK4BOuK1WFyWQEogrBhbhz3HR7F56VV4V6ATz9bG0T96JhaN7UNZbB5mxTZhwxyGM4NJVMVKMIJOoP9EnDZci62JXUjWzMGy7nbEyoYwEFyInU1hzO9IoGSsE7GxfvTNqkXD4U50LpqDwOG3UF7aiL0Nk7iq/zA21VyPY8OHUSmKiLb2oX58FAJNYoOwBI+veA/O2v46zoyPY7K0DgOxNiwT/4J9S4No2stwhD6A3sg2NAyW4pzATrx5vBYTK0pRWTmG8oHdqB1vxovh2TirZgJbK0qwaks/ao6NY391ANUlI5g7KqKz4hwEJgMIhDZjz7xZOEALsPL4Bgh9HQgE5+JA4xjOGR7H2tYPIkbVuPzQr3DPyfUojy3ApVs60TlxDFvPmoNE6mLUD4Yxu+8pdAcmEa0pxdyKEfR2htHJliCKCpRXvoX2sjKkhqKY07kPlJqPixr3IFY6D1XibjweWoJ3aDY+0vI6BnY1orcuhQkkUXK4HKd1RpBafjKOCnHQgUfRsTSGxo734oyDz2NiTjnipZN4NrwUqfK9WDqwGotLX8cYW46DFcfRvLsSeyqXobfxCJbvG0co1Ihdsypw/gtPYvKSSxHuehpHh96PqsGD6GuoxcAsAae0H8LT5adhonUjkuMnoSHZj4mKcgz3L0B9xTactqUX4fllKJ2cjYHGcWwoiYPaBzFadQquFw9h21AQFG5ArL8HI0vGsaT/EIaORVEx/904VNUJEoZQ1d6P7eG5GK1qRGN4GKGAiIHxhThYcR/evyuM6ookXpt9DOXVq9BytAk9pSUYHN6LiuETkag8hHnt9Vgw3o6jbfMwUrINZ+4VcHRRDXopjnEmYr/Yhs8cewObo6XojwCjgRYMRKpxSkcSqfhBnFJSgr3lLdi4rBIXbhfw9tw+xANlGO/vwrzEIUQijWjacxxd8xagt6kBJ3RvQ8dYCUIRAW2dDeisDmB7NIQre57AePBLGI1uxXAoAsTaUd41BmFROUYmU+hKRrEwWIH4gpNAnQHQ4CR6ko+jvmQhlo9PYF1JL8arz0RisAtnloVwbHQNJsoXI9EXQVXNyWhkBxAq7cCWI4uxNNmDU4SN2NA/C68sKENb1QdQUf8g6t6uQpBFMEJtCAbLsbNhDZYfFPHkhYtQVzqK6s4weruH0VdWh/7Gapx2rARXjPWhLroKe+rXYOvQECqHCWVdHSgNl6Jn8VkYD4toDx3H6tgB7KL5EFgP2jrG0Nw/iMqUiMHKCNbPuQ79mERtRx9WDidRVzoLayeH0BXsQsvofsxuWoxXRhgirBS9J1bi9N5qdI4Rzms7gJfEHRAHatDZ3ITlHWEINQcxd88s4IS9eCp6Dk6e2A+htw+plnOxWWzGWYFXIPZ2oCIewGe/+yfH5WNRC/cH/+unCAQ+gMaeXtzVVIoVtc9jbrge4XXjuGhzD4YiD+P8WXNxMFSLW8dvwjcHfoaWeAN+XE+Id1fjs5TEXFaL49iMb5WWYV70CYwfngMkkxCX9GCF+Ab+5bTlWLi5DwvaHsVv9l2JPbMW4lpxEGfufBbYuRUdVaWojnUifPKnsKukDH+segdDLWP4+z1bMIDLMVAKLK78FZaMl2P1Gz/B3aV/g2+vOB1vbU0BAP5c+1OcN2cUw+xMpN6chz0UR/PES9gbY5g9fyFal/0RZdFxfOlwKc7eWgEBp2CfWIeakZdwfEkMrWcN4LHefqzpOogd5XPxu+gW/EdgPwaWDeLund/FpVvWYNW2bVhz4hyEq8rxQWEOXm48gHXJdiwXRvDbZmBrZBuuGRnEiWsOITJrMY51t6J59hMIt+3FW4n34uXV78VIeRX+ZsM/4pT4CXh3eSP+6cQNmJ3YhX/srsfD8bNx2eGFKC0ZR13zOejsb0FP+3FctPBqtNMoaocOYkMpMHvpWpwRFVHeeS02LXkbj/fUIrksjKaGBNA9G+e//QjKemMYQwfKzh7Bk819+NBaEdcGf4F2tgqdZT1IbQSaFtdgBZuProlxhOaWYt14DJ2TQZx2aQq9wSh2RRuQGu5Dd+PfIREcxcIdf8BS4SQ81/AIop3DOKN+LVrenIuHP9mLcrwfs5s6cH/iEnxrtBxrY3U4NNqFF1v/C6wWaN7bimePjOMUDKOaNuGXSz+CyjM60Ip3cM7n9+OeuiY8eEoEJ8VEHKp+Byl6Bz1tvwMxEf+NL2LT72P4XEslgs1DuCs0GyWIQJhdjb6yY2h55u+wcdnbGJ33W3zo5UuRGN2AifoIbmQ/wF1HbkF/61l4dmgTzkjswuorX8HZDFjyVAgDs1cijjNwem8MO3etwaTUHzrrRcyKnYqJgUexsz+FFC3EfZddgYYjn0Dv0CIca/kofr77ZjT1lWL50Zfw+IIxtNE89DYGsaVzNZ6qHMV3nv4DjtQ1YsnKB/CnkS/i3AP/CwA4d8t+/PLd54PaQ9je8BaGhcW49eASbGh4Cn+uHUWPIOC85OV4ATH84pQ2AED0mWN4eDKFtaEtqMTj+PwFt+KK46/iaGoWelr3oWTzBA4BaGnoQnXT9YiWbED70HO4aMs+LN3CsL9BQKDiEA7UxlDfX4U3WibxSuBKMCEEcUUUlxzehrdbW3Dl5iexuvJ59I2fj8M9ItpWvI1f1n8b/9Z7Lc57ogwA8NjiFhyqeBNnvjaMlusn8W/0TQDAdc/9ATfOvRMAsCMcwtDgu3F8rBLvnLESZ28IYEtcxP7GV/CMeD7m1C3DWX1vojGyGvta/4JFh1YhODqGWc1tOK13Ad6pIjy6vBvjqUewr6IKJx++CtXBFZicswPBFzrxf3PfgxuO3A1UPI2VJQvQGl2D08YGsbiyzxX5aCjciWgOgP8DMAuACOBOxtiPiegbAD4DoEcK+hXG2JNSnNsA3AAgBeCLjLFnXOAdJYlJjAeAZ6uqUJkcw5nHgjhh9XMQL0vim0v+HZ1jdYh0P4jQ2Di+Xfs5DKAGD1SNomYyiV4hhQ0DTyK8fhvePutbmLPkCL7dcg2+8a6voHzTp/CCsAV3LPwgNkUuwFfCn0SVMIhXqs/B7LEu9CX248kVCxGu/hSIKhGtPI7YcCt+UjmBWiGAp7quB6qAx8a/DSE+gZKWFVh3eBgvn9aDzz/xKs7sfwXvqb4eH42+gQ+PLMHKV5/B0yf0oDIyig0lbdhQdR3+8eDP0Zvqw/LAKJIQ8P/uqUD1RB8++Z8nYfNrf0Ii+TB2ppaj5ngYXWf+D9B1BVqpG6l9V0FcuxPvLD4JHyh7ElsWz8Udf383rn7sLvzxwzfg4S1v4qHBxeifrMV/vHoH7v1wBE/t/Bmear8LL553AyaH78Fppz2N2souPHbgErwVPxEj5VUAgKVDH8TlJWcDKeAXj20E+4ce1D4xgn/fsR8vXvBTnFT7OloDP8Bvy29GdcONSA0lwKgdjS+uxatfCGCgJ4ofzRnHrNHncEFJAt8pPxsfPBzE3CNbEArGsWbluShJBVDTW4ah7rmoHS7DjlQXjqz9Ff6yLIKWwe1oYsC6+AQuXngWnokwfHTkFDR1v4oTxw7jvurbUZN4ACvWHUT76s9hcvBHiDXNwY7lS/HCwktwJHA+Ln81herdz2PXibOxJv5L/FvdejQ292D5wGL097didOQ+1Fddi1Ppb/Fa3QU4vKsPI039qDr6EIbYmVg+NIFfskvwF7oS+B+Gr7Vfh5JR4GM1Mfy0YzaWjs1F6fFnsWtWG34w9xZ8PPYw9h9tRmpiDP/Y/HFUVXXgUloKVANfLnkbNwSOIClU4fjoTnxxyVp8ixbhW20LsURcgbfECZzbWo/3/uptdF8JEAF/6bgFwkQQwcF1OFjxN2g7eweCcw6houYYdj/wU/QhjBVvTeKHf/8v+OOmL+Grm3+J4/fW4c+XrcCK/nUYvC6FusG30bJ1GIE9q3A0NA/3LnsTYy2AOLYM21tbAQD3DSZw0XgIiZPqkNrWh5FoBB96bTMGrgJW338l+ktPQzJwACsGFmPf4IOYff1ufCnahFAijkg8hlg4gkvGduLRv3kvfrTmC/jESDkWbf4LTuhfi3kv1OA7/wx88rM70fbK9xEcDKC1pBYnHI0g9voP8ebCWYiHutEyKCDacwzzOsvw0uJKzA1+GV95I4HTRm7Divm7sKFvFm67I4FjP0oCAHr+3IL+kXXof3QRLr7i03imdB4ukcTTT878GD41lsR18/6E7x6uRDP+BWOzvob7xAuwYvx9uDr4t9g7Wor3BN8NlALYCaAU2IOjaA4Btxx4ADVl8xFOVGNV9XxMDtyI39e9honR9fjAoVOBtnPQWXoehiqC+Ny9R9Ecr8XOU4YQD/Yi9QZwysh2HBpdAAAYGmhAw459+P7lX8XVHb9FVWoSn3FBPvLo3JMAvswYWwrgbAA3EdEy6dsPGWOnSv8ygn0ZgGsALAdwKYCfEVHABd5RXjKA4wER66NJDAcjAOKoq2tHw6xOrBurwWGICFfPQry+GRBCeLkkgX8KPYDfPvEdfP3t3yAxfAxrFtcCAMb7FmNf6AQQMUwseQyPVpRj1aZKXLhrI04aOYo5QyMAALECWDB0FADQ17wVg7VbgUB6Fj4hABPjrTgYfT39+7CAsY4yVC3cjR2njoAR8NMrduLpk8dw81AJLhmZxMpAetyrnBxDLyvPyt/c0d149xv9aOyJYXHXABqGRzAZiaA6dDfKxSVYMPwVnJAazopzRk87AGBJagLEgJfOeT9SgQA2Lj8bANCz4C9gjAAAt13ySXyj71a0C324pPUGXFqdLovqmm5c+HofvnH8EQwFq6do9wXGpp47FqTLYPLahVPvFgR/jyCJCNIYBhrfQoQJWCYuBgCcdGj6xq+5TbtworA//YMIYQDL//4dJKobQHQBxqsuxmBlJw6LtXjPrC048apORIQxrDicxMlHkhCJsDswAAA4KHTj1bFJXLZ5DaoH9mBJ+bmouvx/wUgEMRGRziMAgEdbw9jUnB6kDpRtRazhYQDAbjqOYDCBSjGFz1yyHHd8+qu449KFeG7OFYhRCZ4P/wveLP8SAGAwcBDrWl9HffuNCBwcRfTFDrwipgVLMpZAX7QPa+o2oiI2jjMP7wJAYMluJCf24PxZH8HCaAAVwekuN1Z1DONLy/Cl2T/F3hNPRkgQ8fCCSbBgHG+DgRjwxmA9Dre9T1bDBCYKKAs3AgBGB1ehsvYYiACSSDMC4uEo3jW5A7VDcXR9JzEVO5FgOD4E7AyHMDwZQWSkAwAQrnkzqx1VTtYBALaLaWFfMRlD09vDqKzsRU/laqSCUQRrFiBYswgA0BgRAQAP3fIPePrm69NlUpWuowMLWhASIvhI/ErEX6gBAHy2P11uzzY9gmcrD6bD73seAHBiwwkIJ0REE0kpx4T65QPoG0tnkB2qR1kwgXMa2sHi0+W5deRtnLf1Kbzv7TewcSKI9vDAdL6FIO4t+xtEhDiW/zGMP373GPasuwJ1GMI9QhKBsIgry4fQRUNZ5ZCqOQYQ4dUP3IR/uvpKrGq4DADQI6T7XbxuFuJBQATD/afUYbCyCjedsBZXn/JIuo7DawCk2z4DUFG7BLdXPYQbF63DKeN7QWIKw50huAFD4c4Y62CMbZSeR5Ae01p0olwJ4E+MsRhj7CCAfQBWOcGsEmIgiM6AyB+BgMuFdCNe1bErTYP0rxk8obs96zeLZn9PhrOFa/mCH+Hz8/+QQ4cF41PPiZJeAMCeifN1054VSje0msFEzreYeDIAIC6ekPU+IKQbSnRhO0iXOtAzUY8jQi+eDm/GO4HDiASyG1kVjRtQSGO0tAZjZYeRKUlmY58+HK/O+p2pr2ggmfU+QdO5qx1LKyaqhg+iqWQuVzrRQDTn3Vhpec67NqEn63d7RbrdBLonAGBqoDTCrJL5qu+PIS08D7csVP0OAIfnXsqVBg8ePxrAV4RqvFZS4hhNOcon+NqMHB2BwazfFVWRnDCVbaOGdPqDZShJJA3DLTs6/VyvEOaPR9ZDRK5MealJXwAzTMuRkKDBAwFUlh7cSoNJnBjTdAvjCEz1QiKaB+A0AOukV18goq1EdDcR1UjvWgDIig/tUBkMiOhGIlpPROt7enqUn7mQCLiyILCFgWBxGSCNUwwAMEITlmm8+u7LMV5xGMcwyym2fLiEQ9IiekLgG5Ts4JWzL7EUb2dZper7tpQ7M1wlZsqt0tySiIjKATwI4J8YY8MAfg5gIYBTAXQA+EEmqEr0nPJijN3JGFvJGFvZ0KDqsdIQYcSNA7kAzsnaXw1SgXSBiHm0rDVYcPnwAEZLK9A4aDyTViJFxTVBSgnhQrOgCq5SJKIQ0oL9D4yxhwCAMdbFGEsxxkQAv8K06qUdwBxZ9FYAx51jufDo8+CKYaajMTon+4XKCMvEaRWZKGaW8Qz19e4uf32oY/XuSXz2mWGUDacKzYqrGK7gUwXmG4bCnYgIwK8B7GSM3SF73ywL9mEA26TnxwBcQ0QRIpoPYDGAt5xjufBIGmqzCwNvcuUMzpQ2svSQim2d/sHSul8ihqXLXnWLLaTgvYH+eLQFgf3DxgFdRnN/WqhHYib2xWYy8rzk55m5nwvgEwDeQ0SbpX+XAfgeEb1DRFsBXAjgSwDAGNsO4H4AOwA8DeAmxtiMGroFj7VVJttclGsrRMRcS5McGkqKXbuip4piamVkMcOhuIiLXu1FVfQhw7CPNL4PoX0j1hJyEFeu+gxqT3zKAUrF3koyyG8+DO3cGWNroD4pfFInzu0AbrfBFycUbKmUHa8IMqPDrZyMIhFmyHQfcqrSmOqjKcjzm8KY6gdyUGHNICIZLAMMBhK9egha0lk621FSjGPE1knS7W5bOZrWXZ9SsxXvTH4SI0IY444mPG2ul11X1gfxYCCOxlMeAtv6YVPxiBllyipPXlvbuttqimvnwiacqFoCMF7aiItmf9xkvNyKVJ3ZOQWJ9HRHYdkfcngxh0QwPS8YkplLihLpWMDcwedV9e/nCJXNodWVQ0qYRKyu2TggN/K/gjm9vAlLq1c7kq4SYoTDRJJnILQCslmWFuKrW3/w1IbXBopcFL1wN1vETgnUilD6wM+apjXYWr3FEZpK6DcxZ0Z9q0JSFNJNJwlxqjNk1ENiwFyzqgjVaX7jqS8zqszh6p2IN7aApPMA48lce/f8Ir9LdaOiYoL39hC0QAFF2RnO+N0BYwzMUtruDhBFL9wLCSIRXaVdeHHWiwXlQxjJPeRkFVfPv8UwTLykG0JAvo1i3tzNDSzp7DcMwyjNd4bj/olaFzlyA5S1WioG8M2Ep9En8O0XMJY9EM0aGtMI6S7aR9/Ag4f+uyBp66Gohbtjum6LEARv7BOHN7rjeEgLB8/7N1SefNQ4oA/HkSopwwORNwrNhin0DZs7jzI25QrNHBqGCzPo9U3sKki6Rihq4V6M+NhLKZx0yEPmNvU7LUWjoCwPBTCGIiYgiCROD9yNShTXTNYOGMcZi9XC9jxwwo9Y3BuToL82zCjh3lK6yFI8xlIIJPKzpLvyTYYvP5wr3APB3NlKbziFk+e3YTvxHbvmWclsDixBH6ZPBNOK3+fSEc2tiJg4ZBzIBSzEYcwWNuJdwjvccRalSvHpyYtc5MoaaqOzHaN1d/j7qu8TTNBtIYHS/Xh7gfkDX2TGv5MKEkzAMBjaSzMWO9O66Fi40pavor9mFHWpJRUOegKCNff0ibG/YOmW/5n6zUhEXSy/uthQWa5qZU9lOn8vBnIdKcnBt0mcDvNi2NjKIpAyIdwp13hOM5jWN/7UbONULNZIkyfP9tWAORvYEskSoYwrrdwBXM2WXr1EH4mdhJSo3keiFEOo+u2c9Hk23AMRczPzZCCAcclxGQF4OHYyLsMIDpZl85YIluD1c76Ng21XmKKvhcIocQtnVVPUwj1F2cI9peLNTQ6tYhYT+7J+TyCBs3pXWqCkF8N6JevH5KObEa7ePA7CMTjkmELaTdEcheXV56IsmOvQyiwfYXYEn2l/YOp36cCJAABRYcb3leDvEZH5TlLW2xt1auoZ/dodg/Yk4b3CRt24TmLDyjPQ3dg49Xsc6XMOTFEGyUB6AOivWQY1KHOrjM8DMtru1fiYSamMJnBew8GC7/+poaiFuxKHA72GYRiH10amO82c/rZ0mTUrGeNDGjzQoOFyG4tP2Zmo2e3z4/mORbiw92XDcBmaotrLPOKkmnfh/KbLdcP880MpXP2K+iyWSbbhrexb+Nb+n0y9DyRLVcN/JvgU/i7wghQ31xrq3pSzp49DlD+9+Gh5rmtlNSQFYHLwl0imOgtl5WiIKyJrsaq+HW1lg4ZhgyyVfVDR5Un9jBLuaqiuzxb4LOxclmtquh2jVSzoI2eOtW8ZbMZJI/ybuY+E3XFPZEZmBEhf7Xf2boar1qpTHHv6X02kBIwIhNFwuqxZaiDnuzBYGI+o+cRoJAiwMcQS+VtVmEVE4Jcnd4vfRY1gzb25FRS5cDfumpX1+TUTtItW6saHhdcghJyZSbGYiEB7Yex/nUQyjzNLN8Bi5gbF65ub8PQ87wo1N+H9s5/W0SB05i2tIhfu7iME5w4IqeFAKIgvNDUgLo1TD4e/hh+Gf47Zq9VXBbO7TTaOd0YR2j6IVGrmdpm4kDvIp2LWTDytYjBW5Si9vWF+fztJBHEHbrGkczaLH2z4vOtp+HAGvnA3gNsbJf+vrhavlJZgfyq95G+gtKvWQHhayyy3hvn8g7mmi1qoDE3ikHgNDkX/ziFu3cGzoxF0b/6I6rdmMj51eiSSe0JWTGxTCekCJGXwus7T85OeCg5hPjbQKiTh/k1FO/pOtBWfARAV6q2fhH6MdZHPZ4XxYR/FL9xnljfhLJh13qgciFpKcu3PnRqskuPWzE6VyHDTvyf3SrZKjCJKTq+cDMwfHE2pMKulQqXLg2Ozz8NwZfblFpcH1qGJBm3Trp0svA97L6HohXsqsd8ghHcbuhJWOS1EZ+7emj4HoJZyZYUzG80VsH6v6xQMxzJnDPALZwqn7svfLNzkPgERopTCUNVCIMv6RyVl6ZVWmWq199N69GWBnX7SNJDEu3Zot0ctXqvCDQUTQcUt3IkBjN8PRWHFvB2Xv3pdzwka/J07RRl1kTxdkmik/1bXdnBS44fzdecURbt0sj1q6oXxDszxk6IUOoRpix+W6oZ6uWmVgVZ69uvQyM49k8KnnxvGhe/kCvdMXIHU3UKUh2qyfqfk9exytRa3cOeAsvrtznLzOUBYqXvRZQafDm92NwELULcXdrnnOLR5me+Lvq1wvajiNNvpykVoSYDPzj0bhZ2aqezZZ+FdTVdx0fnLSSdNPbtd9TNeuBcvrFV9V6V0jN1EXwiHx1DSwm92Nzpag1SpvIN6bWbJDyFJCDxRCoj6p5vH6rbqfp/JaC1bMvUsRCyY8imaRySgfnArA68pUg9UHHCMlijkL3e+cPcIuMWjwVE9KyuT5Se9hMolzyEZyT0so4ZNGy9HsqJa9qaw3dGOvvucjeNoejKJ6K4juuHaz5i6Gx5nHrkMK4e8JoLyAwqYPzPhREn1xLUvdLGKzvgJOHNkTtbqqbb2KLpO/sXU7wQlsKl+EzdNEkUcfa0GY11Wro50Fr5wV2ACUXy69B5sb56Xl/R4Gr4V0XV8tAnPNfB5PwyFYlI6HnJFbAIBG3yHE5KDrCS/1dUZxy7BRQNS15EG28mkvnM3N5HPzdxAmZEBg32Qig5EZGqiyl6+nx+6GY3JcpTKdJnLT3oZo83TDtTUXJG8cPwPWH/4T6o0o/EYRo+VoP21wl8C4wt3BQaQrpStrQsLzIn5GY88/JGR1uxZPOWGMQuvKV8y/OhZ1eS6i3W4yUtMjMat6JHNw4ogX4PzuakbIViR617ZuTVMOm81Nce5QhfqspzeWDtiydGCpG0GM164G/kD8QoI2cLTjHqFp7uX1Eizc3J6dq6SupjbrMzaQaS/acQysZlp7E0y40PcuBQLcl+vEVsclf9zutlyMna8mXKlpLsZ7tx0IrhnCGzUvZWp3qBbKDPZohbuSR72XTmSbYWmsemXFarczWbq5iTmjDc6ljF/tMCLDCK3SiWbetCi7/4MzKrDlu4ewezody3R4UmDt+wyboAz4VMJ2eakE2MJBw23LHy0zEFzkmOEnX+ajck+/hO5wYOjSG2wcmNXNk9iQOmNk/8uhXyjqIV7TyRmWGy5ppBegIsufw2QykcJmOj9+wJ81hcTTFuY2xms9O8mmsbsrhjKg5utJ6QBs7O6VnQigmkBExtsAxvOn36Xl99A3PyNTmYxuE/f6oYXZmpg70WfdSTNNNwV+sUt3KPuuj2d1bwH0Wj2keb8LbH40jkazBZ6tnzF22xrh8MJPF3mTIdT4un4UlPhk4L+XaMk+aWvRvF5zIwie/bIRgq/eadEbedXLcdVa4b5OoU9jhI8hI9iJjg1KQ6FtCbcE7SCkMLixeuAuAC86VoyU+DNibKJP1hRDouXxU+n7VAx/qBlAEA9vuAMOVsQBUHXdp0y3beAFo3rGtZhcWougIsLx4SPrCbwJ3wCL9AlOGPWBN7XmbQsYrygISjqmTtcNN0LhdMSUwi4O4b/dVpLO4tiLcP28na8lHq90Gx4DoUUjJOIAgASFhuVl5y2FblwN0Y8pb88V8JTdyHaZEUtul7+4hnf9abbpzsN2rijeKcjzQhYbW8mqiFBSeyq3Admcrm4cXyFSabyg+n+lJ4Ezp9oLxwzCsx44Z4QzQn3YobuwMTRlxIFOMSUj6F0XcfpHLdReWhQV4OpccwJh1rmEWLGe2AvLN+CV5vexD5m7g7Y57svtMCRAg5UsXJMahMOAgDKA48DABrj2vcP5HtWP+OFu3dmd2peIZ0AcTUaJ0ohGJzEeef/DjU1x7Lo1tZ347zzf6effgFl553vXI/Q9kHVb9OmiPYYJJsZ1Iqdvtwi9zISMzRsxeUkyhiwAPs0SEy3vvFIWt05rHexiEGaXlJ9ZCBo3i3MCtb4DYU7Ec0hopeIaCcRbSdKn4ggoloieo6I9kp/a2RxbiOifUS0m4hyb2FwDOmjPxcKmyBwzDrdbBIhA+KFbo48/orGSX9ntrw8PStpad2R9X72vF2W+eKF3mGkEdklxQJyLyhRp5ddIGrHzPOJjMBSs3YaaMk+8p8P1WH2YCd7JgYn9Dd/rroKvahXpKkVunBwmgd53SXjhTeFTAL4MmNsKYCzAdxERMsA3ArgBcbYYgAvSL8hfbsGwHIAlwL4GZGGs2MHcHp0F34T/j4+E/gLV3i3Rv3VZc5m0VjbbK6DRQIRlA4+AKZzc9UL4dyj5cWAveHpWWBj+MsALHRKE8WZiu9FKuG+HbcbsNL6Y5wrB7Pog/POwJyCIwf9DJBMuqs4MaTOGOtgjG2UnkcA7ATQAuBKAL+Vgv0WwIek5ysB/IkxFmOMHQSwD8Aqh/lO8waGaiHt46GFet1IghtVAXutISNbRINWZWTHrhW7b/I1lA0/hvi4mgD3whzJHCg6iEWL38h5HzR9u7z5WWhi7HEkRh80Ha9Ysbm0xyFKfGWdL6MGtXRyV4jm+sZU9/XAFo6poYOI5gE4DcA6AE2MsQ4gPQAAaJSCtQA4KovWLr1T0rqRiNYT0fqeHqcajwpMFrJeVbagxzxBB2ApRcpepYgZS5gi9fyoRGj2BoTDNg3884Cr59+CC5vdvaDc7aE5ZdMfUUF88vjgF+5EVA7gQQD/xBjTu4lW/YCZ8gVjdzLGVjLGVjY0NPCy4SoiI69iPKXdkBcLxzS/6SEJL1nsGA8VDEBMXIqYaO+me7twYxgtxISqMTqnAKlagXtClak85S91J6HPpZcGJi7hTkQhpAX7HxhjD0mvu4ioWfreDCBzK3I7AHlrbgXA58OzwKjs/xUe7rPiXEgfT+NyrnC1NlU7BAYaS+tHRZsmoD3x76Mn/t9Z73gb7ngygpfj7rpMHid3XU/4UIdg92C+GWW2kS28B1Qf0/AUMwD4rGUIwK8B7GSM3SH79BiA66Tn6wA8Knt/DRFFiGg+gMUA3nKOZfuIh8ogargCHks5U0lya4NxlIFEhqoxfdpy2b5pZAX2ROdxppXbYeLxEq645qDVMbPfv9F7Gg6J7vk7qZw7ghHS9uHuFTg5i9NtOQqB6ebs0VlfPKSh91bCe4KzGMDjW+ZcAJ8A8A4RbZbefQXAdwDcT0Q3ADgC4KMAwBjbTkT3A9iBtKXNTUzPRMMGhNQ0WTObMGvO/R7q+rYDeMZy2nFKYNuE9ux4ayDbmuKKl1K46E2lykfb5e+LA+djfsWzhnw472/bHAphQthwcj8GU1X6gQzZUrostpsPm3buHlnN55ojFo4xjxSJLeSWp10n2fwwFO6MsTXQLmfVe9wYY7cDuN0GX3xgIoybwHQBkuzAT1/dcmAgV7iPoMIw2SAF8JuGR/FIr/bVau1CX9bvk/dMC3Yez41ah2K84x7BWtebe8R5tZfZEmkPd+GBzG0/th2y2xdBy47EUDXCptjhyY9XBgMnIUoW05FkwiCkBBfuashv/yq8nbtnQQBEUW9vVxbW4Hb7DCaQVmcwEERGCrVf+sfisgXoDGebXh4jZw7yMACP9X8NS8cNZqam4Q1psOiQM8LdjurhX+fegd4Qn87+YCiId7e1oCvg3qb4VW+MYdk2fVvy6l1fxWjyA/YTs+uvyOJK7ZnQZuwTurjCrjrm/j2taZjPS1Ijiggg8nLH1J6XHJRITwITYn4vzS5q4c6LWcc78Lf3P4D5g0eNA8vwmed+jF9v/1jOe1KZMYRD92X9nuQUBmozhaPx03DGaF1WKLMgi/HMIgnR9tH9DKoGBzW/1ULreLd5xExsxt5XUYH+QADPueSnnhfhkWUYTP6DxlevrObUEQ+G0dB1PjbG5OWuzbPglA9qFzCcUu9TExBBMRFCR+5ekCBN1AZTs13lLSfdvKZWIMzuSC/Bl/QdMh13fdfpltIcl52atNxUi2DtzSAiIThjO3/p09lqMvnsfBapOGTyfvH4wLSQiY43W6wyjVjeHQO4EA9pq3WdwF+FcPfhLIw7qLu9rvRIcfbqONw5xl9oLCnrwYLD5q1ovGQT7hZqF7+o+U00uC3MLopcuJPsyVsdvhDcRCnhSMr9GktPfrjbaVv/YM746hvBe6aexQI6CDsU6DYOxAHetv6PjfW4oqUZ39j3E3wNPzKZhvxZX0xcUrcfC464aZrqUJ0l+Ok41UoqWrdk/bZ1DaZJFLlwB4wEiRumXFZoqmpYHFC7KCmcTnsNGNFpXMRwPNSDr3eXWWdAm7Qq4mG3XE9MJ3h90Nik1PZdgyoZdGZmap3Gy2WlOBQO4XPHHjC8CDxfImcoaOJmTy2mXLCScQqidMgr4QEei1u4M4C5Voi5dEn3q007Z97oBuHsOlDrDQ04wQY3Bub9H1c4p2r5J0sq+KnJ2pamnLHNkYP0dCIzBpw3EURJzOBwmUTD2aFgOvy+Mm1T43xvMfElpzwgpg9GaeEugjB/wXpLKTqF4hbuAAYra4wDSeCzIHHohKruoCO3vVd+MRYoPF+9DMc1z7JCvL+iXDfow3NLkTDR6r2m7uPFI+GvZv3uT7bh7FgIZxz8lC26eqVhXFayivJQsTrBSibv8v7b2rpTNWwC6T7gdhEUvXDnWfoWeuPGbvpWG4GH+k8WrmppNh2HNy/fqnfP7UEx4VThQNZvJnV1YvY28Wz3JL2K1DIin2E4fX4bLpszG2zYlYP7Uyhu4e6wzC68liwbhXYtoAnDTUn9RnsgrHPFmgyag2KRygCvsv3BN0UE44DdHmBeWZOdXqDPnAvngpSnSd3RcajbtncEg0DM3RwUt3CXIV9i0AP7JLpISIJXFNIHRv63ugp/NFBV8MLIWWvdEMM3fp9EXOMuTR/exMdfErFyrYmNzrzBO8MhM7wHQZ1XHncmbqHohXvhVC6FSVdIpQ/zHKcg7oq+AJbKrsJjkbRfjkRp+kaiO2uq8O0sVYV2I9XL0Uv/cC2WvHlAJwTw4TdELDsKnLaf75i5l8Bbm1e/4u5SOhfM8PJxJxDScecSkN2S6R1x6y7cymc+pUbRC3czSG962K82xnIPbNjdeOOt9EAy7ZBsL6X9VLCUug5VpOyqTUo+eMaHX8kJy2RLTdJZdi7cbM59gxzeWvDINq05GcvU7lVr8yzeLCSnO+HhtsqaDhjQcI/tCNRUfAUcQfQuYueloIV8T0SLXrhzCVUTZTq96w3pb+5BKSY65fwq+5kgImhwpZnV5pEUpQGJxb0mafOGQLuTvsiz4QWrGnesq+w3FvWUC19eTvKQU/8eyF5RC3cGICSY87Tmnl28HrTTlE9cqoXDmuE8Bw803gx4Z0Sh7YPuMuIAeFunWEZgjIGxWN7Haq1TlnI+SlNRrdiadAtt1aYGI6MGBmA06zwEfx58U0gDRAMmTlMWEDwVSaRuAW7dFNJ7ncUMnGz886jDVvzjwSAOmzld6TJK63+LVHwbYoM/hTjK6f8cgJtOuDIkhMpWPLjnDt2wXoK5rGeX330V5Vg9bw6OaTSNQvbAohfuGTiyLGZAwJ1Lo7hqWXRQnEWRxztGlWznaVavf6AmGy9HvmwrrT9UVeDyOfl12aoHwjjERHqDOzXqLYdkQlX2heDFPcVIQ6utvVSavv+hnc+6N68oauFOzPnZaWNcxbWsMl1wmHq7DKPBbCnLVvHwaqOEZBLf+j9rwiLDUYqKulmhcnQEv/yvr6C51xlHX1MIGjvX4lrh2WDB9sVTXtLHuQirrhAEU6sod1HcvRAwNUvkEcgCM9rQ5Euw8F3AGgfh/g4sOWYv5UnBjcu5FbDhiMQo5gUb3sQJRw/i6pf+4uzUoWGHk9RMwd7KNr9z73z3nWyfUfqpf5n+V59YSj9+Pjfei1+4G8C6iyM1x2HuVsxMWL66Bff3Dwo/HDsH572NOg8PlLeDy2813zJKMAbQeP5UaDNeuHtBZBqd7NT+rUbMPZO2UH+nKq+ku5rh5MfJvuwgLab4a5+S/I3So6BLAs1FH+GFUT8aWagUvk8roTSd1uIweGg0L/wARS7cgxFvbSRlg69XuNlMszoBBzvBkUFMpngbn455pwtCrBB25IFuNy+gUEehxRabmoHao6L3c/q1OXe6Rsm4hdJJ/ulZ7vfCrVCKWrjnHgPiiVGYCxT4uMueIfPNKgstDmT8Oc4KH0G3/IBT0pm7YeXoFwRsjZg7m2EVoSTDSYdEHA+a9wRZIhlbNQzxxyl8S3QeQiqFe36YsryC2Tq0HKKGmHV7BVLUwp0YFaxFKQ83ODFCJxLZPlnUD1BYuWLADGZiF1XCYNnvWhEwfGx2Ez42e5ZtOjz4++dEfO1eEZ3D8ouY+Q4RRSXhXjPqAd14AZApCyGVNo3m79/Z5fvkugsRS+ZnMFeiqIW7aLoT5q+hWklJZG7aphsXllMyLYHCNGZb0Kgwp+V8eyh/BtEtvelMUdxeLuSx7Qx8Zl1YT5+E9dAAo7m/oc1jXagGl7Z8CpTnflHUwj0Wzja5O+vs+1XDWVn+qG4smqZiFu5q4I3TJYNw9lOyTtMt3Ys7ZH3wg6WA2JB3Tv9mw75q8IzKFagKNyAstPimkFYRDscKzYIq+G6L4gPP/Lt99nlgyNazViVHOFNwAC7f8O62PKaY87p2t3Hmji2GZzT0kK8xTsjsK8naSMeGKhx4qhE1sTy2UVjPc014FuojrY7y4gZmlHD/q4RCjsZDZ2HPCddgKHxx1vuI6L47ggwrPDsF88tPxoLyU1zmyATkDKbEnFdWkE+Tve/973dQMpG5yUhhhWKJDUmlY2Kc5gl6snAw/XdsL5ikqJnoSe8JlCXM3cRUKLyv5TpcNPtjumEKfYIdmEHCPa+ra43EqqEz81CJo+z8Wks2vYaiJMsoraoSUWbCvl6elto3pY9rJWXzpb+q4TKc2fB+7vBuLWfVqFoRyt7Q7mjaHFqNCadzFkH6eH5YTP9dfMKbXPG+G7zTkKdUpQttxBsVawmGwp2I7iaibiLaJnv3DSI6RkSbpX+Xyb7dRkT7iGg3EV3iFuOAed2uACdnU7l0Nkc/K/vsgB9sKYPZ+Sy8/Xy+4MXDKko4zaEVh7HtaFMPkUXM/VNkTq101KhfHXzZMH7XdxKILXFXpWZnRs7yPJfmSe0eAJeqvP8hY+xU6d+TAEBEywBcA2C5FOdnRGTvunU98Op2OVtdoUUJy5k1O8cRLyUPrCZVkXvgxShHzuSk0G1CDUqe+lCXt7QL0z74ayHeZp5DeQwrq2clDTPf3IShcGeMvQrA2FViGlcC+BNjLMYYOwhgH4BVNvgzAM9i3Vz3VKMnSv+84luGiwsFsRSP3agXJVme4AUdqXnkf/DnAseki8BAu0/D0de+kPVOQUjx1x2o5X19cB/ahT7uuF7sOnbWCV8goq2S2qZGetcCQH7RZrv0ruggnxlePGc2Lmizkw1nq/7r9bXYEtWymS28lHIqtyzUjyGhcNtCWjcOFRuczIWTLVnYcj7GOlbALTWPMbRLZoLieCa0xQJF74h5qz3n5wAWAjgVQAeAH0jvjXfjMgGJbiSi9US0vqenxyIb+UF3MIiBgDntknVvlPogBjxcUW6Sen6ga+u7l2FOj7lSiS/6JT7Y2myTKw/B48uDIOxdVDPTdoMYMU8Ja7OwJNwZY12MsRRjTATwK0yrXtoByK9haQVwXIPGnYyxlYyxlQ0NDVbYyIK2ysQNJ1ZqTVQ/Ha2vjjcd28XgjvrmjP0MP7jLvPDoNzmoOoHC3LObxolHGD7zlLlyMjNm6J0SPYUOGMb31PBUmJOGNpBf5iwJdyKST6c+DCBjSfMYgGuIKEJE8wEsBvCWPRYNueEP6sAymzh7khc6gVOzjsABbU+Rnu5LGpALuCkXrbYFujM1/h9/FHHxZhktC0bqqjKPo91mzBQ9jzw0Omdn7IWRBoZnfonoXgAXAKgnonYAXwdwARGdijTXhwB8FgAYY9uJ6H4AOwAkAdzEmFuXkmrZZOuEd4kPt2GtaSht6Cnr0xm0Gx2Mz8oiuC9XuGd4qqzqwfBwvSUO7aJ3ohbAsKtpGMvEQrQqBqbCmC1OVE6gpeJ74IhigjHkcifj38MdUz4NSP9WbxBemMwpYSjcGWPXqrz+tU742wHcbocpN6FbCbKP/UI9osi+b66Qvpn5wcfjg5FvIskEvIJa03GVqKzsVbCQn3IajFelk/OwcJAjq1TyuFnLr7aZLshAfByJ+BOgcCuQZWrJc9wpO0zN+BEA83iZKDCyeQ9HhnRD22l6vsvfvMDdQubuW3m2zghS+sBHSYnDPj2KRNjmH/mtX3seHDNE7KtqwklzbgWSyfw6EdOrlTnLX+CiwXPN3jNlpZgM5M//lS/cLeGvSXoVnxMtI3hS06IJhweEIlh8TsQjxoG0YKLuuE7JCLxa5YzaRpuBBAHdZb2a351GcQt3YlNLznz3R9OXdXAw6EWzq3D9i4VmIT8oAqHnBbhZTGZbvxf7SwZqqjCz/uztoriFO/gquKQks+nmvR7s3eaZhhDpMg5UIFjdAzHTybxeP4DxYSvvtXp9nr0stLXgxTIucuHOU6SE2rr0xuhKYQdCBgc1CldJ2iknk2aWqUz2NN1J8tld3DjZWUYKva3TSagUkLnBIzesM0JKjwct+sbp3lVdZYKH4hO2ajgU1XfTmwWNLCvbhJdLpqiFu1rBjidKsLH7ZNXwZwnbVN/r0TPz3Tz4VDvJpN7VbPxcNQ2U4907ljhBCgAgMuD3HddgLJV2M+ym1cp3Q79yh7BDPDt/GM2CE15FHKduIPMe0vk6auHibz7KarBeMtMx8zsUePVuKy6oFdUvtl6P7X1LNePkr/Gqz6DNUXC2Mfztli8iEWnCY+U6FhA5SWqUGCM8M3AxXnrnHOyecwK+tfQ/nWKTG466lWJJGV331TbFYVabRntA5kCL4IhVlxoFs1SHAgHUGAczhHodWsujqbWeyza8RT1zLxXKpp4z/p57JvLn/tQM8t2V1QRUItLkaBojicr031iZQUgf3oE9gWLN/wzLeVTjwqxLD/twjr4X1TNFLdzTMFdBTlWCUUO0Nuv2YhNRR4oRjg80FpoNd+CpanBmluydlUJhC3d7OFfF6UTJeKV05Sh64c4lRCkTNr+oj7RgdukiztB8jd4bjgUZ3hmdg3OP7YVaqc4UV7neKGv30Fp6AmrDaTdRjuY1X/VvMhkG4JoWs15G9ful+S3t/DWqGadztxrKanA9XDT74wCAZ/FSPpLLgbwZZaUj2rMCAYDr2VO4KLQJ29h8bGG8A5iT8NT02nEQHBADBkV0btOHAQAjb69BZzDoydmnaTjWLDQI2SikfLfY4p65qx4UyIZAAgaS6bd9ti9+KN7mXyka5/3ds67mtgEvRfoYdQjyjUh7ePGCn04919a2W6azCyn8cs5nLMd3rZZtTI/vir6A14I7HWNlVr8X27I+T6n4bkwO3IG44N6pae+or+yjqIU745yB9kjC/VgoAGt2w+bBYw1rpFKa8lehE0z7k9LM0hgMIogcaBIOFGNjo7FvcS0vvetkAw4vmPY6xzPYHcxcjWBdAGVytqTdeWsQcxRlBoKcxZ2KvQMAGA950SWG9waFohbuheqEarNbQ0543A/ktA8r+ctvIyvkTMeRjTCpiMeEuAPU+OFouXGdUOXwo+KAorOr4XQMVi/momMXTpWgE/sN02a5eqXj27lbwjgRkhyVJCa1jLCkyLwVbWSjmqd6tNIunRbI3puzGIHP6K6gS/S0iYsBaCqoIS0uSvZAALYvvwEtIUKz4r15SnKhW8B6MOrmmYHVwgjhdq5mjHA/a94cNHWKUD0GLqsg0eYEbRQVcOOCCF4DA28qDGYuikEHq9UmPMO5S9YzavlOBEswVloLwC3vi5x54dgPdBtFrZZRmtx1Je1nx2hCPoES22lMJ5b9012vcXloWpS3lHRVDXbTd+oOVXHSM+I1B1YPR7q5UjQ2oTVm+uici7Bu1X9wpZeBE6dl9ekXph0UtXA3Cy92NXcFofuOw4phZitHeE1X3jiOb3biTtI8eEjLW2w5HXdcGLgN2/nP4/T9r0q424XVevGa+BN0GMpRHWroEovHN142hLEkUg6qCSJI6/lWCbtyvtm5Pdjctpz9Ga9mTK81Xhnc8c2iftLcjYN5I2F37/8tfuGeo9pQ/JZ/d7B+clUoykah91WTqGNQJcUMTMiKR0Y7Dp4hTA0Ze//Vwg5H+MitIZ5KyQ6jJvQMPZ4yvjZqN4yZJpavu3GTKv5yrGrmdK1lFAUzWNpvLRFOFL9w54BXZZYTXh+9mDcnZjl2ysZYkLnh9VElz3orpDys5/Sy6UbqTtHkMdq08kmJ1GQ68CTlxwzWv4nJFIjPfjzr2YviUAJT/rTuoUIZlzvXJqcs8tD5XsFTzkP+YS5pKyWktaZQsQpjIpg4YSGNNEJIcc6WndjI5hDhLjeo5ISxP3jzKjB+uC2LitwUkqegpwvQypKy2DYMSTGUqT3qlQRviWY1zOIqIldQcJt4AJPx15Ac34OURWedFZhAD1xw35zVDN1YNTkPpvhrFl6YNXuBBxsgMEUWyMs7QDoYild6YlWR76WjVyA44XbBJu6prJh6nr74nb89J5P7AeTq3Hk3v53SuRcbrPmot4aD9c75BzJC4Vu0LTDEmN4VdOkwTmG6ozkvABMpZxZRdqxYZmLHtYN8zxN+UFdjssrUAz9TVqry1sDyIN9QKdtYySysPesbSCLqLGEDlGN86lnzQBhjYCp7SWaLcTCQP5Fb5MLdHJxszzlWOUY2AoXuTFww3zEKqY5wMu3iWvDp22L9oK7aEtVysq6v54VeNxiYfQEmSxowQgtc58MsErHXEBv8oWE4s83o6vm34Iy6i60xZYAi17lrYxG1Yy51pX9ILcro5CFx+fMofjgzopvby7CC0/eK6KrJf4XI24mTqRfqpCIvQha8aQLAQ+VluHB8QjN3NJky1eg8VUoSM8n4Vq7gahOOMNQPs2VUoIsqT7fGmwGKXrhr6amfj/wbAOARXJtPdjwLIplzNF1YstBPh5yqCme6561/lqy+r9FIzwHR6zTPvHBzpcBj6qnuKI2Dtsq7rzfU4akJ7Vm/oUUV6f7M/eLJCVh2zrzglLjI1TLOHYb2AhzxzKdhY26V9oXCZrVELFJzEDoCjADMQl/+eJGQCJYgJYRt0XC7ZN2qun7B2KzQPDzQzjjhRU6LXLh7z82m2+lYd4NqjSNtS4I0vYKaAGbUbYrX84VNeD16szVilllheO1d/421Z3/TXESDA1/qXPHxmu+DSvbscFTCGUSzeqpYD6IICF0Ttr20qglWpSWa2z3HULgT0d1E1E1E22TvaonoOSLaK/2tkX27jYj2EdFuIrrELcYB893RbmHSlEAzD019pNSKHKtoUvzVSTMX/JsOeiqRQk/sZ9F+R+gQGN4oMWe5kQhX8tEeTLstOGenk4WlV3cGg4gpNlQOUOVx8etm8zq6vxHhzf0YmsiswBSHAS0krhnF5ULjmbnfA+BSxbtbAbzAGFsM4AXpN4hoGdIa0uVSnJ8RkRvrNU3oziQdbRVmDqbzhV0bqbbIixqUJUFcDTNfF9cbwtWGr09bvqG6PRJxhYPI22l/41Vj6t/168oB9w4F10Sq5SH9Lu6Qy2UriE2mhXoyZU2p4YWzKhkY5oAx9ioApYebKwH8Vnr+LYAPyd7/iTEWY4wdBLAPwCpnWFVjjiOMd8raEOsjGrM+rwjcDAovGXRhiTvOMtbaKONKs0DFVqA5jWkyRGlrncFgfrcjTQlkz8x+jGFV597EGOsAAOlv5sBzC4CjsnDt0rscENGNRLSeiNb39PRYZOOvA3E4sPhxqU16Ucyb6azuHUvjTVnxlpORpgEt1xK5s34zp45zVwx8DcfJ5iVanDWbhxUdy8wX7lpQa0WqpcEYu5MxtpIxtrKhocFhNtyBGaEhWtLNkfJFmpbD3iP1Kp1LEOQ6fbfAkX04upkry0JAFLDplC8AAbWTnvxI6ZQ0b4lp5bF8gsnCqEN9oDCwMhqxf4DIbq0o+4GZ8wH2NTrmuDeTXL73oqzauXcRUTNjrIOImgF0S+/bAcyRhWsFcNwOg3ogxue1rRCiZ0ycnm1rCiGZPxOrPGoJ4+6AWtVasC4qkP7TiX5QEihHLMV36jIpU7jUxWowUDsH6d2iN/gSU+u5TmTCyAc/J4xqMfM9ICrbTT7rf9pgYe1Z34QweRjAK67xMlrR5ig9r8HqzP0xANdJz9cBeFT2/hoiihDRfACLAbxlj0VtqPl6yAmT89t6A5kS0hwCz6xaWn17iXshxP0ZgG4fcUKdnm/zSEaEzsaVU+VFABgT8MG2m3B24+VcNESZcDfDvVuir1BegYzq30pK6iT1KU2W1BeZ8PXeBqDhzJ2I7gVwAYB6ImoH8HUA3wFwPxHdAOAIgI8CAGNsOxHdD2AHgCSAmxizc9lYIcAQ3DOEVKu+61Mz1ZTfHXQme3ImXf1mK0uvQAr4UpyPHcs+AjEQBvCWlO80My2li21QdjpDbpsQWhGj+YDZNlm4nRxnFaCFhaFwZ4xpnd+/SCP87QBut8OUW+Bt5MGDoxB6JtU/8tadWz0qybnBlXOkWz7G6tm5826gyXzLFFh6BJC2MoqHyi3T4F5t2Oi7TOeXGZhmwcH6sX9WxG242xgbBwcAVBcsfTMo8hOquTMBVY2JlRbloDUWr/Bzc2EXxCRnCtkoXFMtDtcSgSSwpJ2vlA4Fuo0D5Ql6K4aG6BztjzqoiUsH8lIuXfxckEmxupGDEjwrsHyzX9TC3Y3CYipP1jDNXeexWs1QL0u+t/VucrfGibXSMXtZh3cWoQCHi6r0F3Ju5D7vVQHf+l0KgUGrh170P2itKBjBCdOQHCxCG97T/Hc4oXKlqXgMQLm0qmTikGF462dprQQ0AZNFWjhHEMYoauFeOJirrMkJa86kSmJJfOv/kqga1hZGuasCTUcHlniwhvykpVcLb5p0G5AFE+zX90qbuDFzXUlXaBcIBKAKadVWeSjjUSTN5+7Ff4vjs1a7lLB14ffOshscZIQDClb7pMs3+gLemuYARe7yN9/FSVnPCnWQUqOqZM6Q2dwGftLBfiw5BoxvTOgFMw1iqjakpsC7yeom9Cau/9jYgMeMJ5BT0Fs5OQVLKViI5IaDqmMt75aenDF+0zj8YppOT+PpqLPNjQornOE2RdOTiD9XhgDDs5j5lVhFPXNXqwAvXmjtprVMhvKLpSXoE+xVp7a3D+8hBcIBLJR+KbcqKeedFszmz/HysNg0GKApDHlIGuXDLFtMMfVxBDlkSCUtp6FoS+6ck8sLil64e28x5AKMzsdQDDc3NeBzsxoVYfIxGy2M+F881od3UqepftNbYfHACwMax0kKjWfZWwvVz3caVGtQ4RhsuArXO73arHGce+dbzaOo1TKAucJ0ptNKFcIYSicZxqMuVhDvhpmks2wPaVcnFyXykk+7aZwxdw5eP9Ke9e7C/o3omMhekLt1PR4PCuLmeCq/buTWXZt5O/P8gdoTgfZ3dHn5wmMplMYsMGaI4vFHU9QzdzUkENL5auL4nUF9LN3RhXt+mMLsPo1Zk350FdjvoLwrGdOVrkpUp3s63JbjAqEnoOY8TbLOkP6OlzSp86MHXans7ElkHrWX8rcmeaeN3aXPzOIo5eQejFHokfK0qaZeEZy/nWHlPicbohenPfqYccK9A7Mtx+Vv14S2wwMAIBPuhRmdTR2VtzCDcGrocijhLCgbb9esXO/SVEDf4Eo4v82pkYI04pBe03TXjjgvcCo5vfUq71rWC6o8JYpauHMVu3xqZbMGaGqmaLJvMGtJF8O8Q65ndbOBm93s1c+v9dJwyqiGf6+CI1yhjwi7DhP5c1k/Zm+PybQJnS0Uuc6ds6ANy9C67lIrBuMKlR1ea5Ygn3EbHf7gC2kfM0+cOJ8jrpuvNKrJKC7XtqelZm1NweLEmjBXcPL1LrPYvvR6dDWdqfrN6kJPj6NC9ZWinrkXEkbLNWbWVausBaQShyCmBrg6JcmcZPGn5Wxzc6Px5vr0di7lqlERZ+0SDSnwlWrGPM8huKxFIqf5VVCHi9SdKhwtwe4ED14ySSjqmTsBKjtQ9grfdLPkmZ2ZJJkYfSgdT++uCJWpXba6iFlsaOnxfo/QYVm1kS/zSKvd6Kv3jWBOr4hPfFndusbrqxKysEYzqpNchYGOtYymfT2berIHvvgjNs91mEtNgpN27y4fnCtq4e6ch5D03Y2mito7A7Qr0ujV8A4u0mrFkK+ikQ9kGVz5hgijI4v1kjsHQ7WJzYyEchqoFRsqLRt2m2Y6NoIm4tsQH30TqP7XrPeCaLdHmiufSUGlDFwTmPoH47x4rXBRq2WSDo3cZqClFVT2NfOzZodaRx6mnc6Z5/GDN1sfe1kE79GlnNnqeBI0mrCWDxUGq1IOFAgDJpLW/OQ40RTKFJ6vCQzx+Fo46jbVSRTkwAEf8i3/i3rmzlNYqfj0s91qt6Vu4GDWWX1dNi35ElBwuv17tz+pQsvyJvJal3labvfYFPCzLZ/CKozoMJH9k4clpj8RdRRmi8gLzcksD17gWYminrnzFKm5fc3cZnhh98tYfqDSdLrOgGT/G4dLw/q+vZmLiPMNNSFqm1uXs+uU3D820uxgCnp7JfaKhG87VSVUgVUa8kmV1QmcF3tOkQt3Y3QKDdkvTDakxWP7ceauGs3vTq0Cee243d6sNDsT9aKjNoBs1Us+LR54ytuInzHSvxLSEjR0+lq86OVDXhUeVE3jAmGzY7S8ZC1T3MKdkWFhdgVkzrS4OpIU1NDO2MBUT2ZRwOdOVidBTkFl36yPH0nSaTp5k/deGFgyB9ucVT5YGZwyOw3qVhi86TlRpm5byzhrVX6usM1EaC+0OT4Ut3B3GLwdim+7zoFGYLOPaB6KcuAoipq1Rr5PqOp95VlR8Ki7KsYZvvRwCiWxwnRqZT7ag4HMB57IjiM9bpgjzB+6UGVsIj86QuLHoZ9gNvWpJWA+HQdQ5MLdeL7EFD/sLJvqaQhCRomvIGMkTPLRbPPWNbyz8gSQm2+jcsgamAzyctXrIlbvYrhgqzRDN3Fo0soUwIj3/1dXmxMup+05cEitGDZBvWUYw3BlYC1uDd1rIoa7KGprGR4QzOiR9QN+PfQ7tKZ6AOQ6qLIP7eHB3Iaqt/FGNOIYLcFm93BCOHjRvjmYsh7XTJEM0TiSUEtMxx7cNEf5gH2upo9v8e6euY8iF+4mlOgO4T3iZuyXCXc3Zw9M8ddcLG20MMP7wFzDjc1Nut/FZAfEVDdqa4/ZSkevZRiWkCwy7x6M+VMN/LWaYrnujs3sryhXr3pgMjFlhAcib2T9TiTNlII3xTxHARUNilq4m580OTHNMm8waL09ZDbI+Ijpq5ymv/049RPNmnfiSLQdC5r4SHpZGw5PAgiDQU+w6pj1idY1jnkxCSXFX43PAMO4dGm1I+npBbFlYQTsO1SGs2WJ/Qe+i/fiaW42jNPPwzLJ4gk9K93G7dwUuc5dRaDlnBR1F5nkkooTe2Z1+87zSSq/0qlEEc8J7VW8sagF1z01FwzAZKQak5FqlVBa54Y1oPpZX8pa6ohK3TfPQtPAnp+nnWSEpBttX4+mqGD+AC3CnfQF1Vh8A0l+dF5mJiMe1MJporiFewGWSFNHMBTWIixHuNuHHo3SyfRSPZKYrkJGSkGgZavsDA9AdsdwQ/88WDZ99H7t6tuxdvXtsq/a3PG4XuFdEclhpuzcEgQEpnFuTXrp+kZAoek72/HV+onV1bnqQMEy33xrGW7wFZW1AqVJ/V0pQ6rKqYnD7geCkt+SoBP+SyxBJ103TPBUiDqjZNOfmhtb3uiE4xhhTAuRLJLOF7RVlRRvLCdtyjK5X4fVuBcfNxVXjY7yOc2SwXkWg/f8KTuPohbuVgpUfyOKxy5FaXZmnRcj8J76k4PL/I7pVDtXe2MKBgq8WFUMpGmBbcdiw0AhnhXSat7tbtxNByCVd1khWa74cmNyr0WSGMPkwB1ITr5liz4Tx1Xf/w/9C56gD9ui7RS8tKVc1MK9kCLF2hzDXQ4MVSgc9s9mhZVaaCt3tVqBXdcHXANhZmKvktTFwnqDyM6Xg7oFVfYvvm11xfuchaZzbTbTHpITa6fe6ZWM5uw4dZwnMX7GdFM0ewDQGPmWV0Ut3AFzhW2sPzafHu9E1w702isv6WwVrYkzgwQNCc5NwhE4qetWn7Waz9CvwndAV++fm7LsG9PhxSbUrBkZQ2LiNSCl413SMWif9JpykZAHLvIJJ9VNTsGWKSQRHQIwAiAFIMkYW0lEtQDuAzAPwCEAf8sYG7DHpjZ4BBV3Q2KcQ4WWwJOT4k3TMCGjN3wpO92ZvGDuq1f39vKrYt3hDGHTIIUKTD3PxhOOgXgEqcm3geQBlRja8dRTUhu2+PZg1PcmOBJ2EaaSt3rJqmq63te5X8gYO5UxtlL6fSuAFxhjiwG8IP12Hc19DNWj7h9AUFbHnB6GinGWM6O35uYgP63cacGcDy2MqjByMGE5JaErfUNFIWWOa4OxgQ9sJ2z8vew62jY0sqZrLWMQ1y24oZa5EsBvpeffAviQC2kAyC6rH9+Zwp3/a+PcNSeUlXfVWobv/9o4XTfr9YbAU86kSQwDwpjJSGqz3LRoSsV2pC/69ijk6i7t6+wyD/x0GxoOorR00DJfRoirnFhNQ8N0h3OkCCSA+mE9bb61dhyYclFgRYnowyrsCncG4Fki2kBEN0rvmhhjHQAg/W1Ui0hENxLReiJa39Nj8Tg8r20yp/GDuZ3u6dC1o2q0nFgm8Kmcbg5JF2rnfNGLpY4uGsr6naG5fel16K07yZAfOfXE+NOID/8fVxwrSJCIG2Y1qswU9ctNrue2IrxVacrin7h0Dc5Y+bg1OhyNMKmwdjK3h6gdePnaEGapjMWlpXwDtBbrS3FEJayZvQoNqJBwb1jgNbx2IF8Owa5wP5cxdjqA9wO4iYjO543IGLuTMbaSMbayoaHBOIIK+DYzC79EtMuBM43Cus01AehqWoWtJ/+DLKyenaackjOrKTXeDoTH8VZJVFV3yWfWyp+u5hahicpxxi6fPx2W9U7/3AUBCMXVU1i46G1u/tQQncw9EV34XjkN/XpRFpR6aL3+UKi82hLujLHj0t9uAA8j7S6xi4iaAUD6222XSW3wbUnsqCXEpK1jp25KyYde0a3jJMwJbZxKMm4ejOwJaqkirG8OGtGwE85t6AruQsFi/SujFfI2I6OydHafx6MbqkRURkQVmWcA7wOwDcBjAK6Tgl0H4FG7TOrB6IrUvkAnHl8cxG8uTme1I6i34WHcTTIhxijGzyQn7LYbvejppbuKfnwcqLo3gCl3MyZ5yJdgGQjkNlWjwztaMBVax86dM6rpbwCw+DjDh9eKKhv1HOk6YjhgTvA40go0O4DbbcyJTWTvwY4pZBOAhym9TAkC+CNj7GkiehvA/UR0A4AjAD5qn03rSFJaavVVAugG7mhK4kPt9ukqZ+5WOqFheDWdogOtSE6i4okAyl4LIDGbARGAOE29vDFb1DySwxddykIyEFV77TI0NnClv/9+X3ra8sCHNbghfgHMPWng0D1pmULKv5qdwndWnoZNyz6NkpHdnDH0MlTYdmlKxeMyq5aFO2PsAIAVKu/7AFxkhyknoSxs0eZKaEqomaXj9Aosy3aYVF5zCunM0kfTxMu8jjFfsMyBLGJcOAWvnncTWibvUQ1qSy5yRDarymIqZMmCUDVkzcnqVRld5JODXbP+BmIgjGS4Oh3cFSY4YWR0YWF5XaieMgNOqHoTZpvAIGoc52G4tEv1fZZrVoXagac8jcK4Mqt3gSQBSApLAACTQovzCTgFo7xr7JVmVzNTD8yRhvyT2t25mbTy3RedSs+Rje5MP1IpyKLcUPUkcmoq/SLtDtd4Icv73UyF8cxyD2CRCYocICARnDDkxxuWPNbS0Uq7W2HOqYSpurOhc3cD+sqczE816yEO2oQ8WJepcOIBizYl8sGR232nqIU7nymbJNw5aVqv1Nw9fz2IqUEwllTEyKbBt2TXE9TZShpjAaW26NcIqTKDc7JD8PV39dnoGMV08zp17MEKwxp1osavGVNLsyidzJMQVs2EWzpJKVyeL6ZV9Lq8pu0milq462/ugOOrMiyPbTSDIKiZ5Sk3VLUbSYoI8eG7kRh7WjNMJjVAXQiZkn0AKmQnD+Vxx6ks6yV30/ZAH3Dm/FGuvtoJ00rLULE/lyMj9z71vLadGI88Nic/+c5ITI/3OhMd1UHQwcZUoCUWlxWThTh2UNTC3QqcqPvJ6lpN3aMqFGlmNnXF5GEr0TU/6vFUMp5tGZ3Ba3QBFw/6LLgv+syoZcypqK1ZeBgyoUBn45mKaJwNkYO+oFg26JcVx5JGCZt9RmtLvijAe7x9OoJbnJhGUQt3XqM9QL7hYT/NSUoYhkvynMzk1DVatTjWUpyo6twttkk1IZWvyZNeMoLoDBNOuSfYsex6u6xoomFwwDYNZVsx0+bKJpijdW68qvCOAM1AnyOtr+5OiopauDsOB9tMnNx3YmaELCHO1Y4YuBocecPvnxanBODvntfmMLss9HLCp47ghlujnlkdnclgRiuz3/wohXe9qR3GOGVrqyc3irMIxxVNzHjhntGjO1sn9qhpLZFzNlRV45pJW93qnce0LSusShDXFTEa5n16YeSvz97BR5vL+oTrizPgoZ9j5+6QtQmT/W8Wq3Zrx1Oru2wloQk73LxBy+SzeJRMM164T4FTLWOlc6khFMp1lqSGhccZ/vtXSYRjSe1AsgQjyFYJlcb5lnyaQjzzfoqMhR5W8JatZluskw+DHUcvHNCSw5Afjk0Gk4ZXyh+movKs68wM1u5DO+FgKnsFThr+8N1QsNpFkQt3xtHwMzN3yfJEJyj/BdnGTmZZls5dm+7HXhLR1gu0dg4bpq1GqSRmpsGoCcHsB7Odzj03BMb50mu8PGooYtP8a+XCUGGgN4ZwFI0RnzxuLWgye2KQSVedthP1pWarrvfdXJq9wQKqNE3WhxIiC+DFC36KA/Muz42b58GryIW7MdwQPlYoana0zIqC2/5OP/UIplcMXL5HmID22eeBmbQttraBZB1OznmYYp7pSAp5ts2Wg+KZ2SRPfRu9VwZgXHmzZZCcUStJq8iRkJE7QGehxl0gmHYMqDRPMFJjiiwEADg65z3OMGcDtu5QLQZk3NtOt0/tyuFzxMTS83Y7Oy+qOl991UJf7TIMV7QhEH9aM7xuOgSkUl1IJNaDVU/TLWGLsOeExZgXn0CTPgkPI3fvgmvmbhhAtmfhcEFwTzpYdlubutCRycWOgpYqaeMVgJ3xiXhVP2pxDbX9+W+FASGzGlIeENBSy0iaATKzc+Fby+jCbPE4U5w8VSfT4WpuDjKZqZ0+zS2n3ISD86/g5E+dm4mJR5GKbQSTeU8jhAEAIovqm59wfMr35NWJ5PRtZVQGXKfyqCEElPRJJVCu2SLL+T4kZG/b81tp66juAFSMWxG0vHHM2pTzoxY6ak8GDAoCEiopK9W+dYlpOied/JwKMROrKJdR9MI9B4plk5aViGXyDtExQ9f6rFHdLkeUl8qUkMnohwrfKAFwFbIep3pCWP6tf8pPvJZ1hDEfWnCiJPV17topvGvuHAupMZl4Vafd1q0+VBADUoa3K2SnlUND5c2skgUIkFLBoNc41L9tjH5Ol5vz5rbilsb6aSqUUcMo6MrI19R0ysLrkpfgb6hyg6+oJOHFWa5GMiXT2Uqh7pRLFtCR9ByDodA2uTuR50FAffvBZukxgCkHN+NUlSRMfTRrtpjZwNcPo56uqrlhJojF6tNb3IlTsxCzxNXzVxkI4N2zPorTa99lkp41PFdWqvOVL0/TZp1OTyvNo6iFO8BTbNl6U6d0pwHFCVRrG7fTahmz/mPCJSNYddafIUTHNMN8Mfiw6ntVWwSN3q7k4Wb8HAeEBVkfJhHFF/ELHW7tw2zpOqU+mRJXhTIKUlWna69OjWEuIzlWYTobsjx86K62FL9DlBZP5cEqDsrWkc2TUfnwlZ8X9qqKXrjzQq2wSwIViAbKdeOVBasQEUqmfpO0oWpceabFkanQdS17EYlMoKTlkGYYyvmRMQuVpyq940y+lxrxaORDEMGwPRwCEQODgD6avuRcKQCGK9r4iJuEutJJ641efOPYNWMMdUP2uqyV8YZv0pCZLeqkY2jil01KK7KWcOfN2zLhsEpcdaLT6wB3V4nq+8/qPBnzmlFNFV60Fp4DGxhiUYhg+H1lhXagrCvCspvJB9s+jyvbblINm8Hlcz6HK9o+n/WOTG1RpaHu60R/5p5Z2ilTahpgCKb0IqqlJH+WlYliKc1nL0R4tnoU17Q0YzgypJJGNk/rz7gFA1X2/NWbUZoYnX1Qdz+QG4fJXl+8ieHnP1NZ87isneIin7Ph6qTOhdA22G/IT1YzzN2VNMfGVPjsQUtO72jLBWAIqUQ2lxZPlI6mVVN9UemkTcaSIdF872YVtXCPsSD2lx/Bd+tqNMOYOdqsFUS+oZO2XjA/g9MWRJnv2geymOLHf9+VQkQyZ9dWfast3dP/q/vU4m96DIRjkbSp2GRwMuf7tBnZNCajddz0jTBYtTDr9/yu3G1GPbVMQDJnu+WBFKLxXOFu6YSqmn5dJ3jmmzLacMUi7Drh2mzCKqoZUgzXRryYxzT3Zx87Yo42R//I4p+pD7B6M/e9iz+KWOUHOJixhkyKYjKMnUuvy3lvFI+vDbkr7otauBOApIGDrhJpZumkDoxBzWSN145BQUurl+vQjiT1IhrnVP0eWXV7Ha3FKc9lGNkvnWvIm069Oet3Hd/h3hzM7QEWH9cvL6ddERhR27X8Szg+W7aBqBCUDMCSJWv4aJLaoz11oWBBLaP2zdwWsQZ1QW8D1AxU2v1UkmbMNtTRERrHXdEXcm2JXFbMF7VwB/iK/szdIgIpta0oK+mpWy8oBXB5Zd/Us3YdTu9Cme8AUwlzfUqbdmVm7ioqiKnEjEtIBMkaDq9ayDkhaeRKwpAjlYgxHhfNeUQmD2odlDRHVntlnL6K0tpuBTHt8TtKuau77HQ1VB2ai2690nEaykmbkblnpkNP83Y4MgIASOVZ2ha1cOfRfTcdH8S/PiTiko1hiJwHcv85eD/mkPrl0mkYC/doZDTrqxElXdW5miXNlM8c7Yg8wm/62ZpgUO2YqnfOmbTp0CsP4mi2suQ2R8LawaR0kqRx8tCGvKwbH1RSM0FffWXGSP5Nna6ljVul3l6DiBWroYBBK5vI1KdmGzH73iRiMooGGbSUokQyYnwNhKMoeuFOBpcyhGPpGVnNGGE8dA4AIDb8OyRjWzVoAl8MPoK7Qj/QoMjAVCSPVR82ykMSj5ebW2oq+8MoTR/KkbfTrHVLlhwz0NeKuS8ZCaY37dxYgQqJzGxbX530idmzdHgxPzjyoireq/NVI11pPyBziEbdRHaaM4ECuXwqq5SpDAdawlvlXVzxXXVzm8kTNi657HwZWaDww0o/ZCm9FPj2M+R7Z7k8pSFI+tBAijl2mYweilq4A4CQMlhOk0ysSR2BpXqQHH8+N6isGSld62bDeMWgJz+12GQgfKWhXvZSL7z6zG4wMF2l2mZbMg3s1KN6U1ATApq5J8XfLDjf1EhvWq3yqU11NWZO38qQNo8tkUxoeTZuzWD6kJNGfcie55a24qPz/gWVgTITKRhslqhMXM6Yb2zKmqUCNJEkVwATM3qLUyztpB1IQTkR+sP3UvifX6SyVjRuoKiFO88McsrUUGQ5ppB6EDR0axlliJIQ5xZQDgKKZNROMOrSUkzttAT68q3TnjOy3A9kcmSinTHZqkBVLaT2yqRaRlTs+po52ck0SuHVyJckXkyxkoPL53wOH5Sb0EJDE6Uzi9OGYuauIwBmR9Ou3mqClapp8K5Q1EOoc6p3iImPrh7U91I01Ysq6rlU0ODkuCohLU5y3yjro3SS4QNviVOreZ6VgwCgcQi4PPCGeV5NoKi9QvI0GibIGwz/WCbo6N5IRaTx+N1Ww+n7sxtFwIAGtxWOImz1gIgjqtaImfQ1KDPSb7Aq0QKmfIzwQVUVMMWXygBnUoAncvyXSJRtDARaFztIlC3TzQwkU6oAg4mGk3BZ+51FbbqXaQw0Ku8Y6Vx6Y5BeFh2tkIoPn35GxLt2MBxrSNOooHHDOBk00YAZJk2jqGfugHGjygiA9OED4yaY6czaM3eXllIS2WxTM8r6lhXcpNQRhWl6qRxdfPqbkUfA6XfTQ4FanJrUSG4knk1Qo4QdiK5UzZCGjbUTyDnwwpVEOk5mVqocILI2wyX6grKdcJSd1YmD5glV0+OpvBEyTZ7SfJkZUvQzXzvMt9LUQs7MXdqMDSfNtx83B2Gg2IU7A4yKaMpsTgrLu9svqNT4vlD6RBxTmZEpw5s1/ZsahGR05lNHTjiRFKfylBliDKnYDhDL5kCU1TTn+KEJI/WWqqtch5vyhFgBjJ2g+o2BNJtFWjWjP4hRcFB6SNgaY4zN5nJXBqqDjeYmHlOG1Aino7bW4QUAJqM1Cv44iWlAv90o+LFCTaeDMwb84qcqe3RZvvENUlQM2BntoaBT1bpbUS6iqIV7KBLT31TDdDvMbFjq4Yp1IhoHcoVsBkdDQZ05hL7G0nCizXLjnSAcywnW23hVFsEcsskYEuNPA7HjKsI9s9xVsVJnGuZoqozLhTuTzbwcbL4GPfupgduA3msRSZRamL+phZRRCaT1tqRy0tbM5opaG+Llh2m4nlC7RUo51BpNd7QwJAg5lmCMAqicqNeIIUtTbcZggFTiCJKTm6Z4YhpikDQvpXaqvZmgoxTumW6jW9VTO3V5RVELd6JUbrUoZdNU4afVMnrV+J4tDDf/OdNhcofizJjPo3OXx+ZphJkQqodWZM+JkEJxntOq0imTGMt6mxK0NtpkYVRO+6ops0TQ1KAaQe5F4OqXXExTCaSMm7kyxB212TPIoWQDGIsjKKr4FzGCYXXIBKuyPenof+MjDyIx/vL0O7Ob41lx9GorWydNAFJCKGdgNrtfkJDfPCV7H05FZfypx9WYauSgqlvAH7+bRPloAonRPyM58ZI5JrMSzfdcOFfVNjVzN7ctlRe4JtyJ6FIi2k1E+4joVpdSgWHRye2FOfS+YckCUm1TMEkkE+wGsyWzNaqqc8+lxSiQeciOmBNYMceTz9zlnWIqOOH10B6IXPOL6fgfDK7FNakXFN/VaEyX/fd/bf406LFQ9obn+OgGxAZ/grKJ3DplMCPY1HTuGVGVm48DC67NeZeBmDyMVGzj1G+BwxQympwLMTUAJmZ8KChm7joq4umrRwmvnP+jqfbNdSBOpXzU3VIAApve5rfr8nfeO0EERWDhAZV9GSXJqbT4de6WZsdckdTbRGbmrma3vgPLZTG1KLoHV4Q7EQUA/BTA+wEsA3AtES1zPB2mPRffEQ7hibLSaVNI6X+jAg1K/VFtSZ1ZpKvvzdpbdE1by6hvYU49UUDqhFkZU4mSLdzlR5/lkw/GkkhOvAlReslzRDp7QxX4QCrbpEtVTSIbUFr7VAKYRDxxEABQMxLMWSobIUu/zlTeSo0mhGRObfQ0nWsxJXWUiC2ID/8GsaG7pCj817RlphmCQ2IibSIr0aQAllWfgwAFUDcsPzuhDgI03QhURlqn0wikwwSTWVvDBrTNiEfz/dBUDBM699vpP62y5AhI7bSlbaJEqwF8gzF2ifT7NgBgjH1bLfzKlSvZ+vXrTafzvVuuxplr1E+a+vDhw0cxoL2tBJ+4d6NxQBUQ0QbG2Eq1b27ZubcAOCr73Q7gLAVTNwK4EQDa2qxd5iAKQfTXBIwD+vDhw4dHMV4WNQ5kAW4Jd8P1EmPsTgB3AumZu5VEbv32H6xE8+HDh48ZD7c2VNsByK9fbwVw3KW0fPjw4cOHAm4J97cBLCai+UQUBnANgMdcSsuHDx8+fCjgilqGMZYkoi8AeAZpdyl3M8a2u5GWDx8+fPjIhWuOwxhjTwJ40i36Pnz48OFDG0V9QtWHDx8+fKjDF+4+fPjwMQPhC3cfPnz4mIHwhbsPHz58zEC44n7ANBNEPQAO2yBRD0DvNuK/dvjlow+/fIzhl5E+ClU+cxljDWofPCHc7YKI1mv5V/Dhl48R/PIxhl9G+vBi+fhqGR8+fPiYgfCFuw8fPnzMQMwU4X5noRnwOPzy0YdfPsbwy0gfniufGaFz9+HDhw8f2ZgpM3cfPnz48CGDL9x9+PDhYwaiqIV7fi7h9gaI6G4i6iaibbJ3tUT0HBHtlf7WyL7dJpXLbiK6RPb+DCJ6R/r2P0Tpy02JKEJE90nv1xHRvLxm0CaIaA4RvUREO4loOxHdLL33y0gCEUWJ6C0i2iKV0Tel934ZyUBEASLaRERPSL+Ls3wYY0X5D2lXwvsBLAAQBrAFwLJC8+Vifs8HcDqAbbJ33wNwq/R8K4DvSs/LpPKIAJgvlVNA+vYWgNVI35b1FID3S+8/D+AX0vM1AO4rdJ5Nlk8zgNOl5woAe6Ry8MtouowIQLn0HAKwDsDZfhnllNM/A/gjgCek30VZPgUvSBsVsBrAM7LftwG4rdB8uZzneQrhvhtAs/TcDGC3Wlkg7Vd/tRRml+z9tQB+KQ8jPQeRPm1Hhc6zjbJ6FMDFfhlplk8pgI1I323sl9F0XloBvADgPTLhXpTlU8xqGbVLuFsKxEuh0MQY6wAA6W+j9F6rbFqkZ+X7rDiMsSSAIQB1rnHuIqSl7mlIz0z9MpJBUjlsBtAN4DnGmF9G2fgRgH8DIMreFWX5FLNwN7yE+68YWmWjV2YzojyJqBzAgwD+iTE2rBdU5d2MLyPGWIoxdirSM9RVRHSSTvC/qjIiossBdDPGNvBGUXnnmfIpZuHuX8INdBFRMwBIf7ul91pl0y49K99nxSGiIIAqAP2uce4CiCiEtGD/A2PsIem1X0YqYIwNAngZwKXwyyiDcwF8kIgOAfgTgPcQ0e9RpOVTzMLdv4Q7nd/rpOfrkNYzZ95fI+3MzwewGMBb0pJyhIjOlnbvP6mIk6H1EQAvMkkxWAyQ8vNrADsZY3fIPvllJIGIGoioWnouAfBeALvglxEAgDF2G2OslTE2D2l58iJj7OMo1vIp9AaGzc2Py5C2itgP4N8LzY/Leb0XQAeABNKj/w1I6+peALBX+lsrC//vUrnshrRTL71fCWCb9O0nmD6lHAXwAIB9SO/0Lyh0nk2Wz7uQXt5uBbBZ+neZX0ZZZXQKgE1SGW0D8DXpvV9GuWV1AaY3VIuyfHz3Az58+PAxA1HMahkfPnz48KEBX7j78OHDxwyEL9x9+PDhYwbCF+4+fPjwMQPhC3cfPnz4mIHwhbsPHz58zED4wt2HDx8+ZiD+P5ZlHRdLxEbBAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "