Commit
·
8ba3d15
1
Parent(s):
bc6b9f4
Upload 2 files
Browse files- 21075A6603-random_Forest.ipynb +362 -0
- Random_forest.pdf +0 -0
21075A6603-random_Forest.ipynb
ADDED
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "650e8268",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# Random Forest"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": null,
|
14 |
+
"id": "4c638f04",
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"from sklearn.datasets import load_iris\n",
|
19 |
+
"iris=load_iris()"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "code",
|
24 |
+
"execution_count": 2,
|
25 |
+
"id": "e711262a",
|
26 |
+
"metadata": {},
|
27 |
+
"outputs": [],
|
28 |
+
"source": [
|
29 |
+
"x,y=iris.data,iris.target"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"cell_type": "code",
|
34 |
+
"execution_count": 17,
|
35 |
+
"id": "638bbf11",
|
36 |
+
"metadata": {},
|
37 |
+
"outputs": [],
|
38 |
+
"source": [
|
39 |
+
"from sklearn.model_selection import train_test_split\n",
|
40 |
+
"x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=150)"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"execution_count": 5,
|
46 |
+
"id": "1518fbc2",
|
47 |
+
"metadata": {
|
48 |
+
"collapsed": true
|
49 |
+
},
|
50 |
+
"outputs": [
|
51 |
+
{
|
52 |
+
"data": {
|
53 |
+
"text/plain": [
|
54 |
+
"array([[5.5, 2.4, 3.7, 1. ],\n",
|
55 |
+
" [5.7, 2.8, 4.1, 1.3],\n",
|
56 |
+
" [6. , 2.2, 5. , 1.5],\n",
|
57 |
+
" [4.8, 3. , 1.4, 0.1],\n",
|
58 |
+
" [5.4, 3.9, 1.3, 0.4],\n",
|
59 |
+
" [6.4, 3.2, 4.5, 1.5],\n",
|
60 |
+
" [5.1, 3.8, 1.6, 0.2],\n",
|
61 |
+
" [5.5, 2.5, 4. , 1.3],\n",
|
62 |
+
" [6.3, 3.4, 5.6, 2.4],\n",
|
63 |
+
" [5.8, 2.8, 5.1, 2.4],\n",
|
64 |
+
" [4.5, 2.3, 1.3, 0.3],\n",
|
65 |
+
" [5.5, 2.6, 4.4, 1.2],\n",
|
66 |
+
" [7.1, 3. , 5.9, 2.1],\n",
|
67 |
+
" [7.2, 3.6, 6.1, 2.5],\n",
|
68 |
+
" [4.9, 3.6, 1.4, 0.1],\n",
|
69 |
+
" [4.6, 3.4, 1.4, 0.3],\n",
|
70 |
+
" [5. , 3. , 1.6, 0.2],\n",
|
71 |
+
" [5.1, 3.7, 1.5, 0.4],\n",
|
72 |
+
" [5.8, 2.6, 4. , 1.2],\n",
|
73 |
+
" [4.9, 3.1, 1.5, 0.1],\n",
|
74 |
+
" [5.1, 3.3, 1.7, 0.5],\n",
|
75 |
+
" [5. , 3.2, 1.2, 0.2],\n",
|
76 |
+
" [6.5, 2.8, 4.6, 1.5],\n",
|
77 |
+
" [7.9, 3.8, 6.4, 2. ],\n",
|
78 |
+
" [6.1, 3. , 4.9, 1.8],\n",
|
79 |
+
" [5.4, 3. , 4.5, 1.5],\n",
|
80 |
+
" [6.4, 2.7, 5.3, 1.9],\n",
|
81 |
+
" [5.7, 2.9, 4.2, 1.3],\n",
|
82 |
+
" [7.7, 3.8, 6.7, 2.2],\n",
|
83 |
+
" [6.5, 3.2, 5.1, 2. ],\n",
|
84 |
+
" [5.8, 2.7, 3.9, 1.2],\n",
|
85 |
+
" [4.6, 3.6, 1. , 0.2],\n",
|
86 |
+
" [6.9, 3.1, 5.4, 2.1],\n",
|
87 |
+
" [6.7, 3.3, 5.7, 2.1],\n",
|
88 |
+
" [6.3, 2.8, 5.1, 1.5],\n",
|
89 |
+
" [5.5, 4.2, 1.4, 0.2],\n",
|
90 |
+
" [4.4, 3.2, 1.3, 0.2],\n",
|
91 |
+
" [5.8, 2.7, 5.1, 1.9],\n",
|
92 |
+
" [5.4, 3.9, 1.7, 0.4],\n",
|
93 |
+
" [5.5, 3.5, 1.3, 0.2],\n",
|
94 |
+
" [5. , 3.5, 1.6, 0.6],\n",
|
95 |
+
" [6.9, 3.1, 4.9, 1.5],\n",
|
96 |
+
" [6.5, 3. , 5.8, 2.2],\n",
|
97 |
+
" [6.7, 3.3, 5.7, 2.5],\n",
|
98 |
+
" [6.1, 2.6, 5.6, 1.4],\n",
|
99 |
+
" [5.4, 3.7, 1.5, 0.2],\n",
|
100 |
+
" [6. , 3.4, 4.5, 1.6],\n",
|
101 |
+
" [5.9, 3.2, 4.8, 1.8],\n",
|
102 |
+
" [4.6, 3.1, 1.5, 0.2],\n",
|
103 |
+
" [6.8, 2.8, 4.8, 1.4],\n",
|
104 |
+
" [4.9, 2.4, 3.3, 1. ],\n",
|
105 |
+
" [6.2, 2.8, 4.8, 1.8],\n",
|
106 |
+
" [5.1, 3.5, 1.4, 0.2],\n",
|
107 |
+
" [6. , 2.9, 4.5, 1.5],\n",
|
108 |
+
" [5.6, 3. , 4.1, 1.3],\n",
|
109 |
+
" [6. , 2.7, 5.1, 1.6],\n",
|
110 |
+
" [7. , 3.2, 4.7, 1.4],\n",
|
111 |
+
" [6.2, 2.2, 4.5, 1.5],\n",
|
112 |
+
" [5.7, 3. , 4.2, 1.2],\n",
|
113 |
+
" [6.4, 2.8, 5.6, 2.2],\n",
|
114 |
+
" [5.7, 2.5, 5. , 2. ],\n",
|
115 |
+
" [4.3, 3. , 1.1, 0.1],\n",
|
116 |
+
" [6.3, 2.5, 4.9, 1.5],\n",
|
117 |
+
" [5.1, 3.5, 1.4, 0.3],\n",
|
118 |
+
" [6.4, 2.9, 4.3, 1.3],\n",
|
119 |
+
" [7.2, 3. , 5.8, 1.6],\n",
|
120 |
+
" [6.4, 3.1, 5.5, 1.8],\n",
|
121 |
+
" [4.9, 2.5, 4.5, 1.7],\n",
|
122 |
+
" [5.6, 2.9, 3.6, 1.3],\n",
|
123 |
+
" [5.7, 3.8, 1.7, 0.3],\n",
|
124 |
+
" [5.1, 3.8, 1.9, 0.4],\n",
|
125 |
+
" [4.4, 3. , 1.3, 0.2],\n",
|
126 |
+
" [5.1, 3.4, 1.5, 0.2],\n",
|
127 |
+
" [5.6, 2.8, 4.9, 2. ],\n",
|
128 |
+
" [5.3, 3.7, 1.5, 0.2],\n",
|
129 |
+
" [4.8, 3.1, 1.6, 0.2],\n",
|
130 |
+
" [6.3, 3.3, 4.7, 1.6],\n",
|
131 |
+
" [5.2, 3.5, 1.5, 0.2],\n",
|
132 |
+
" [6.7, 3.1, 5.6, 2.4],\n",
|
133 |
+
" [6.1, 2.9, 4.7, 1.4],\n",
|
134 |
+
" [6.9, 3.1, 5.1, 2.3],\n",
|
135 |
+
" [5.1, 3.8, 1.5, 0.3],\n",
|
136 |
+
" [5.8, 2.7, 5.1, 1.9],\n",
|
137 |
+
" [7.6, 3. , 6.6, 2.1],\n",
|
138 |
+
" [4.7, 3.2, 1.3, 0.2],\n",
|
139 |
+
" [5.5, 2.4, 3.8, 1.1],\n",
|
140 |
+
" [6.1, 2.8, 4. , 1.3],\n",
|
141 |
+
" [5.7, 2.8, 4.5, 1.3],\n",
|
142 |
+
" [6.8, 3.2, 5.9, 2.3],\n",
|
143 |
+
" [5.9, 3. , 4.2, 1.5],\n",
|
144 |
+
" [6.7, 3.1, 4.4, 1.4],\n",
|
145 |
+
" [4.6, 3.2, 1.4, 0.2],\n",
|
146 |
+
" [5. , 3.3, 1.4, 0.2],\n",
|
147 |
+
" [5. , 3.4, 1.5, 0.2],\n",
|
148 |
+
" [6.5, 3. , 5.2, 2. ],\n",
|
149 |
+
" [5.2, 2.7, 3.9, 1.4],\n",
|
150 |
+
" [6.1, 3. , 4.6, 1.4],\n",
|
151 |
+
" [5. , 3.6, 1.4, 0.2],\n",
|
152 |
+
" [6.3, 3.3, 6. , 2.5],\n",
|
153 |
+
" [6.7, 2.5, 5.8, 1.8],\n",
|
154 |
+
" [7.4, 2.8, 6.1, 1.9],\n",
|
155 |
+
" [6.7, 3.1, 4.7, 1.5],\n",
|
156 |
+
" [5. , 2.3, 3.3, 1. ],\n",
|
157 |
+
" [6.6, 2.9, 4.6, 1.3],\n",
|
158 |
+
" [5. , 2. , 3.5, 1. ],\n",
|
159 |
+
" [7.3, 2.9, 6.3, 1.8],\n",
|
160 |
+
" [6.2, 3.4, 5.4, 2.3],\n",
|
161 |
+
" [4.9, 3.1, 1.5, 0.2],\n",
|
162 |
+
" [5.8, 4. , 1.2, 0.2],\n",
|
163 |
+
" [5.6, 3. , 4.5, 1.5],\n",
|
164 |
+
" [5.5, 2.3, 4. , 1.3],\n",
|
165 |
+
" [5.1, 2.5, 3. , 1.1],\n",
|
166 |
+
" [5.6, 2.7, 4.2, 1.3],\n",
|
167 |
+
" [6. , 3. , 4.8, 1.8],\n",
|
168 |
+
" [5.7, 2.6, 3.5, 1. ],\n",
|
169 |
+
" [6.3, 2.3, 4.4, 1.3],\n",
|
170 |
+
" [6.3, 2.9, 5.6, 1.8],\n",
|
171 |
+
" [5.8, 2.7, 4.1, 1. ],\n",
|
172 |
+
" [4.8, 3.4, 1.9, 0.2],\n",
|
173 |
+
" [4.4, 2.9, 1.4, 0.2]])"
|
174 |
+
]
|
175 |
+
},
|
176 |
+
"execution_count": 5,
|
177 |
+
"metadata": {},
|
178 |
+
"output_type": "execute_result"
|
179 |
+
}
|
180 |
+
],
|
181 |
+
"source": [
|
182 |
+
"x_train"
|
183 |
+
]
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"cell_type": "code",
|
187 |
+
"execution_count": 18,
|
188 |
+
"id": "ce8f4d0c",
|
189 |
+
"metadata": {},
|
190 |
+
"outputs": [
|
191 |
+
{
|
192 |
+
"data": {
|
193 |
+
"text/plain": [
|
194 |
+
"array([1, 1, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 2, 2,\n",
|
195 |
+
" 0, 2, 1, 2, 0, 1, 1, 1, 0, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 0, 1, 1,\n",
|
196 |
+
" 1, 1, 1, 2, 1, 0, 2, 1, 0, 0, 0, 0, 0, 2, 2, 0, 2, 1, 0, 0, 1, 1,\n",
|
197 |
+
" 1, 2, 2, 0, 0, 0, 2, 1, 2, 2, 2, 2, 1, 2, 0, 2, 2, 1, 0, 1, 1, 0,\n",
|
198 |
+
" 0, 2, 1, 2, 1, 2, 0, 1, 1, 2, 2, 0, 0, 2, 0, 0, 2, 1, 1, 2, 2, 0,\n",
|
199 |
+
" 0, 0, 2, 2, 1, 2, 2, 2, 1, 0])"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
"execution_count": 18,
|
203 |
+
"metadata": {},
|
204 |
+
"output_type": "execute_result"
|
205 |
+
}
|
206 |
+
],
|
207 |
+
"source": [
|
208 |
+
"y_train"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"cell_type": "code",
|
213 |
+
"execution_count": 7,
|
214 |
+
"id": "289a4d3c",
|
215 |
+
"metadata": {},
|
216 |
+
"outputs": [],
|
217 |
+
"source": [
|
218 |
+
"#Random Forest classification\n",
|
219 |
+
"from sklearn.ensemble import RandomForestClassifier"
|
220 |
+
]
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"cell_type": "code",
|
224 |
+
"execution_count": 19,
|
225 |
+
"id": "bc2b28f8",
|
226 |
+
"metadata": {},
|
227 |
+
"outputs": [
|
228 |
+
{
|
229 |
+
"data": {
|
230 |
+
"text/plain": [
|
231 |
+
"RandomForestClassifier(n_estimators=30)"
|
232 |
+
]
|
233 |
+
},
|
234 |
+
"execution_count": 19,
|
235 |
+
"metadata": {},
|
236 |
+
"output_type": "execute_result"
|
237 |
+
}
|
238 |
+
],
|
239 |
+
"source": [
|
240 |
+
"from sklearn.ensemble import RandomForestClassifier\n",
|
241 |
+
"classifier = RandomForestClassifier(n_estimators=30)\n",
|
242 |
+
"classifier.fit(x_train,y_train)"
|
243 |
+
]
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"cell_type": "code",
|
247 |
+
"execution_count": 20,
|
248 |
+
"id": "40ba2646",
|
249 |
+
"metadata": {},
|
250 |
+
"outputs": [
|
251 |
+
{
|
252 |
+
"name": "stdout",
|
253 |
+
"output_type": "stream",
|
254 |
+
"text": [
|
255 |
+
"Accuracy: 96.66666666666667\n",
|
256 |
+
"Confusion Matrix: [[ 9 0 0]\n",
|
257 |
+
" [ 0 11 1]\n",
|
258 |
+
" [ 0 0 9]]\n",
|
259 |
+
"Report : precision recall f1-score support\n",
|
260 |
+
"\n",
|
261 |
+
" 0 1.00 1.00 1.00 9\n",
|
262 |
+
" 1 1.00 0.92 0.96 12\n",
|
263 |
+
" 2 0.90 1.00 0.95 9\n",
|
264 |
+
"\n",
|
265 |
+
" accuracy 0.97 30\n",
|
266 |
+
" macro avg 0.97 0.97 0.97 30\n",
|
267 |
+
"weighted avg 0.97 0.97 0.97 30\n",
|
268 |
+
"\n"
|
269 |
+
]
|
270 |
+
}
|
271 |
+
],
|
272 |
+
"source": [
|
273 |
+
"from sklearn.metrics import accuracy_score\n",
|
274 |
+
"from sklearn.metrics import confusion_matrix\n",
|
275 |
+
"from sklearn.metrics import classification_report\n",
|
276 |
+
"y_pred=classifier.predict(x_test)\n",
|
277 |
+
"accuracy=accuracy_score(y_test,y_pred)\n",
|
278 |
+
"print(\"Accuracy:\",(accuracy)*100)\n",
|
279 |
+
"print(\"Confusion Matrix: \",confusion_matrix(y_test,y_pred))\n",
|
280 |
+
"print(\"Report :\",classification_report(y_test,y_pred))"
|
281 |
+
]
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"cell_type": "code",
|
285 |
+
"execution_count": 21,
|
286 |
+
"id": "57dad48d",
|
287 |
+
"metadata": {},
|
288 |
+
"outputs": [
|
289 |
+
{
|
290 |
+
"data": {
|
291 |
+
"text/plain": [
|
292 |
+
"RandomForestClassifier(n_estimators=20)"
|
293 |
+
]
|
294 |
+
},
|
295 |
+
"execution_count": 21,
|
296 |
+
"metadata": {},
|
297 |
+
"output_type": "execute_result"
|
298 |
+
}
|
299 |
+
],
|
300 |
+
"source": [
|
301 |
+
"classifier = RandomForestClassifier(n_estimators=20)\n",
|
302 |
+
"classifier.fit(x_train,y_train)"
|
303 |
+
]
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"cell_type": "code",
|
307 |
+
"execution_count": 22,
|
308 |
+
"id": "0c13e041",
|
309 |
+
"metadata": {},
|
310 |
+
"outputs": [
|
311 |
+
{
|
312 |
+
"name": "stdout",
|
313 |
+
"output_type": "stream",
|
314 |
+
"text": [
|
315 |
+
"Accuracy: 96.66666666666667\n",
|
316 |
+
"Confusion Matrix: [[ 9 0 0]\n",
|
317 |
+
" [ 0 11 1]\n",
|
318 |
+
" [ 0 0 9]]\n",
|
319 |
+
"Report : precision recall f1-score support\n",
|
320 |
+
"\n",
|
321 |
+
" 0 1.00 1.00 1.00 9\n",
|
322 |
+
" 1 1.00 0.92 0.96 12\n",
|
323 |
+
" 2 0.90 1.00 0.95 9\n",
|
324 |
+
"\n",
|
325 |
+
" accuracy 0.97 30\n",
|
326 |
+
" macro avg 0.97 0.97 0.97 30\n",
|
327 |
+
"weighted avg 0.97 0.97 0.97 30\n",
|
328 |
+
"\n"
|
329 |
+
]
|
330 |
+
}
|
331 |
+
],
|
332 |
+
"source": [
|
333 |
+
"y_pred=classifier.predict(x_test)\n",
|
334 |
+
"accuracy=accuracy_score(y_test,y_pred)\n",
|
335 |
+
"print(\"Accuracy:\",(accuracy)*100)\n",
|
336 |
+
"print(\"Confusion Matrix: \",confusion_matrix(y_test,y_pred))\n",
|
337 |
+
"print(\"Report :\",classification_report(y_test,y_pred))"
|
338 |
+
]
|
339 |
+
}
|
340 |
+
],
|
341 |
+
"metadata": {
|
342 |
+
"kernelspec": {
|
343 |
+
"display_name": "Python 3 (ipykernel)",
|
344 |
+
"language": "python",
|
345 |
+
"name": "python3"
|
346 |
+
},
|
347 |
+
"language_info": {
|
348 |
+
"codemirror_mode": {
|
349 |
+
"name": "ipython",
|
350 |
+
"version": 3
|
351 |
+
},
|
352 |
+
"file_extension": ".py",
|
353 |
+
"mimetype": "text/x-python",
|
354 |
+
"name": "python",
|
355 |
+
"nbconvert_exporter": "python",
|
356 |
+
"pygments_lexer": "ipython3",
|
357 |
+
"version": "3.9.13"
|
358 |
+
}
|
359 |
+
},
|
360 |
+
"nbformat": 4,
|
361 |
+
"nbformat_minor": 5
|
362 |
+
}
|
Random_forest.pdf
ADDED
Binary file (119 kB). View file
|
|