--- library_name: transformers language: - tw license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small zh-TW results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: zh-TW split: test args: 'config: zh-TW, split: test' metrics: - name: Wer type: wer value: 40.41197706519431 --- # Whisper Small zh-TW This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2271 - Wer: 40.4120 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0964 | 1.4184 | 1000 | 0.1998 | 41.1552 | | 0.0317 | 2.8369 | 2000 | 0.2073 | 41.5375 | | 0.0049 | 4.2553 | 3000 | 0.2142 | 40.4757 | | 0.0015 | 5.6738 | 4000 | 0.2238 | 40.5606 | | 0.0009 | 7.0922 | 5000 | 0.2271 | 40.4120 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0