Anhforth commited on
Commit
0dd4a81
·
1 Parent(s): 349b039

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -30,7 +30,7 @@ extra_gated_heading: Please read the LICENSE to access this model
30
 
31
  # 模型信息 Model Information
32
 
33
- 我们使用 [AltCLIP](https://github.com/FlagAI-Open/FlagAI/tree/master/examples/AltCLIP/README.md) 作为text encoder,基于 [Stable Diffusion](https://huggingface.co/CompVis/stable-diffusion) 训练了双语Diffusion模型,训练数据来自 [WuDao数据集](https://data.baai.ac.cn/details/WuDaoCorporaText) 和 [LAION](https://huggingface.co/datasets/ChristophSchuhmann/improved_aesthetics_6plus) 。
34
 
35
  我们的版本在中英文对齐方面表现非常出色,是目前市面上开源的最强版本,保留了原版stable diffusion的大部分能力,并且在某些例子上比有着比原版模型更出色的能力。
36
 
@@ -40,7 +40,7 @@ AltDiffusion支持线上演示,点击 [这里](https://huggingface.co/spaces/B
40
 
41
  Our model performs well in aligning Chinese and English, and is the strongest open source version on the market today, retaining most of the stable diffusion capabilities of the original, and in some cases even better than the original model.
42
 
43
- We used [AltCLIP](https://github.com/FlagAI-Open/FlagAI/tree/master/examples/AltCLIP/README.md) as the text encoder, and trained a bilingual Diffusion model based on [Stable Diffusion](https://huggingface.co/CompVis/stable-diffusion), with training data from [WuDao dataset](https://data.baai.ac.cn/details/WuDaoCorporaText) and [LAION](https://huggingface.co/datasets/laion/laion2B-en).
44
 
45
  AltDiffusion model is backed by a bilingual CLIP model named AltCLIP, which is also accessible in FlagAI. You can read [this tutorial](https://github.com/FlagAI-Open/FlagAI/tree/master/examples/AltCLIP/README.md) for more information.
46
 
 
30
 
31
  # 模型信息 Model Information
32
 
33
+ 我们使用 [AltCLIP](https://github.com/FlagAI-Open/FlagAI/tree/master/examples/AltCLIP/README.md),基于 [Stable Diffusion](https://huggingface.co/CompVis/stable-diffusion) 训练了双语Diffusion模型,训练数据来自 [WuDao数据集](https://data.baai.ac.cn/details/WuDaoCorporaText) 和 [LAION](https://huggingface.co/datasets/ChristophSchuhmann/improved_aesthetics_6plus) 。
34
 
35
  我们的版本在中英文对齐方面表现非常出色,是目前市面上开源的最强版本,保留了原版stable diffusion的大部分能力,并且在某些例子上比有着比原版模型更出色的能力。
36
 
 
40
 
41
  Our model performs well in aligning Chinese and English, and is the strongest open source version on the market today, retaining most of the stable diffusion capabilities of the original, and in some cases even better than the original model.
42
 
43
+ We used [AltCLIP](https://github.com/FlagAI-Open/FlagAI/tree/master/examples/AltCLIP/README.md), and trained a bilingual Diffusion model based on [Stable Diffusion](https://huggingface.co/CompVis/stable-diffusion), with training data from [WuDao dataset](https://data.baai.ac.cn/details/WuDaoCorporaText) and [LAION](https://huggingface.co/datasets/laion/laion2B-en).
44
 
45
  AltDiffusion model is backed by a bilingual CLIP model named AltCLIP, which is also accessible in FlagAI. You can read [this tutorial](https://github.com/FlagAI-Open/FlagAI/tree/master/examples/AltCLIP/README.md) for more information.
46