File size: 7,949 Bytes
84abdcc 1a584e2 84abdcc 1a584e2 84abdcc 59e7c4a 2ed1c57 59e7c4a 2e6bc2e 2ed1c57 2e6bc2e f0aeb57 2ed1c57 59e7c4a 2e6bc2e 59e7c4a 54a4ed6 59e7c4a 2e6bc2e 59e7c4a fe4e270 a7a72ba fe4e270 805c0ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
license: apache-2.0
language:
- en
- zh
tags:
- multimodal
library_name: transformers
datasets:
- BAAI/Infinity-MM
- BAAI/Infinity-Instruct
- BAAI/Infinity-Preference
base_model:
- Qwen/Qwen2.5-1.5B-Instruct
- google/siglip-so400m-patch14-384
pipeline_tag: image-text-to-text
---
# Introduction
The **Aquila-VL-2B** model is a vision-language model (VLM) trained based on the [LLava-one-vision](https://llava-vl.github.io/blog/2024-08-05-llava-onevision/) framework. The [Qwen2.5-1.5B-instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) model is chose as the LLM, while [siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) is utilized as the vision tower.
The model was trained on our self-built Infinity-MM dataset, which contains approximately 40 million image-text pairs. This dataset is a combination of open-source data collected from the internet and synthetic instruction data generated using open-source VLM models.
We have open-sourced [Infinity-MM](https://huggingface.co/datasets/BAAI/Infinity-MM) dataset and related resources. We hope you enjoy using them!
## News
- `2024/11/19`: We have released [intermediate checkpoints](https://huggingface.co/BAAI/Aquila-VL-2B-Intermediate) obtained during different stages of training. Please feel free to use these models for analysis and experimentation.
- `2024/10/25`: The [Aquila-VL-2B](https://huggingface.co/BAAI/Aquila-VL-2B-llava-qwen) model and [Infinity-MM](https://huggingface.co/datasets/BAAI/Infinity-MM) dataset are now available. We have also released the [technical report](https://arxiv.org/abs/2410.18558) simultaneously.
# Evaluation
We evaluated the model using the [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) tool. Whenever possible, we prioritized using the OpenAI API for test sets that support API-based evaluation.
| Benchmark | MiniCPM-V-2 | InternVL2-2B | XinYuan-VL-2B | Qwen2-VL-2B-Instruct | Aquila-VL-2B |
| :--------------------------- | :---------: | :----------: | :-----------: | :------------------: | :----------: |
| MMBench-EN<sub>test</sub> | 69.4 | 73.4 | **78.9** | 74.9 | 78.8 |
| MMBench-CN<sub>test</sub> | 65.9 | 70.9 | 76.1 | 73.9 | **76.4** |
| MMBench_V1.1<sub>test</sub> | 65.2 | 69.7 | **75.4** | 72.7 | 75.2 |
| MMT-Bench<sub>test</sub> | 54.5 | 53.3 | 57.2 | 54.8 | **58.2** |
| RealWorldQA | 55.4 | 57.3 | 63.9 | 62.6 | **63.9** |
| HallusionBench | 36.8 | 38.1 | 36.0 | 41.5 | **43.0** |
| SEEDBench2<sub>plus</sub> | 51.8 | 60.0 | 63.0 | 62.4 | **63.0** |
| LLaVABench | 66.1 | 64.8 | 42.4 | 52.5 | **68.4** |
| MMStar | 41.6 | 50.2 | 51.9 | 47.8 | **54.9** |
| POPE | 86.6 | 85.3 | **89.4** | 88.0 | 83.6 |
| MMVet | 44.0 | 41.1 | 42.7 | **50.7** | 44.3 |
| MMMU<sub>val</sub> | 39.6 | 34.9 | 43.6 | 41.7 | **47.4** |
| ScienceQA<sub>test</sub> | 80.4 | 94.1 | 86.6 | 78.1 | **95.2** |
| AI2D<sub>test</sub> | 64.8 | 74.4 | 74.2 | 74.6 | **75.0** |
| MathVista<sub>testmini</sub> | 39.0 | 45.0 | 47.1 | 47.9 | **59.0** |
| MathVerse<sub>testmini</sub> | 19.8 | 24.7 | 22.2 | 21.0 | **26.2** |
| MathVision | 15.4 | 12.6 | 16.3 | 17.5 | **18.4** |
| DocVQA<sub>test</sub> | 71.0 | 86.9 | 87.6 | **89.9** | 85.0 |
| InfoVQA<sub>test</sub> | 40.0 | 59.5 | 59.1 | **65.4** | 58.3 |
| ChartQA<sub>test</sub> | 59.6 | 71.4 | 57.1 | 73.5 | **76.5** |
| TextVQA<sub>val</sub> | 74.3 | 73.5 | 77.6 | **79.9** | 76.4 |
| OCRVQA<sub>testcore</sub> | 54.4 | 40.2 | 67.6 | **68.7** | 64.0 |
| VCR<sub>en easy</sub> | 27.6 | 51.6 | 67.7 | 68.3 | **70.0** |
| OCRBench | 613 | 784 | 782 | **810** | 772 |
| Average | 53.5 | 58.8 | 60.9 | 62.1 | **64.1** |
For comparison models, evaluations were conducted in a local environment, so the scores may differ slightly from those reported in papers or on the official VLMEvalKit leaderboard.
# How to use
```python
# pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
from llava.model.builder import load_pretrained_model
from llava.mm_utils import process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from llava.conversation import conv_templates
from PIL import Image
import requests
import copy
import torch
import warnings
warnings.filterwarnings("ignore")
pretrained = "BAAI/Aquila-VL-2B-llava-qwen"
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map) # Add any other thing you want to pass in llava_model_args
model.eval()
# load image from url
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
# load image from local environment
# url = "./local_image.jpg"
# image = Image.open(url)
image_tensor = process_images([image], image_processor, model.config)
image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor]
conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
question = DEFAULT_IMAGE_TOKEN + "\nWhat is shown in this image?"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
image_sizes = [image.size]
cont = model.generate(
input_ids,
images=image_tensor,
image_sizes=image_sizes,
do_sample=False,
temperature=0,
max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
print(text_outputs)
```
# Future Plan
* We plan to train models of various sizes.
* Future training will incorporate multi-image and video data.
## **Citation**
If you find this useful, please cite the following work
```
@misc{gu2024infinitymmscalingmultimodalperformance,
title={Infinity-MM: Scaling Multimodal Performance with Large-Scale and High-Quality Instruction Data},
author={Shuhao Gu and Jialing Zhang and Siyuan Zhou and Kevin Yu and Zhaohu Xing and Liangdong Wang and Zhou Cao and Jintao Jia and Zhuoyi Zhang and Yixuan Wang and Zhenchong Hu and Bo-Wen Zhang and Jijie Li and Dong Liang and Yingli Zhao and Yulong Ao and Yaoqi Liu and Fangxiang Feng and Guang Liu},
year={2024},
eprint={2410.18558},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.18558},
}
```
|