BAAI
/

File size: 8,013 Bytes
84abdcc
 
 
 
1a584e2
84abdcc
 
 
1a584e2
 
 
 
 
 
 
8ec485c
84abdcc
 
4d34400
84abdcc
59e7c4a
 
2ed1c57
59e7c4a
 
 
2e6bc2e
2ed1c57
2e6bc2e
 
f0aeb57
2ed1c57
59e7c4a
 
 
2e6bc2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59e7c4a
 
 
 
 
54a4ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59e7c4a
 
 
 
2e6bc2e
59e7c4a
fe4e270
a7a72ba
fe4e270
 
 
 
 
 
 
 
 
 
8ec485c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
license: apache-2.0
language:
- en
- zh
tags:
- multimodal
library_name: transformers
datasets:
- BAAI/Infinity-MM
- BAAI/Infinity-Instruct
- BAAI/Infinity-Preference
base_model:
- Qwen/Qwen2.5-1.5B-Instruct
- google/siglip-so400m-patch14-384
pipeline_tag: visual-question-answering
---

![mof-class1](https://mot.isitopen.ai/model/1130/badge/1)

# Introduction

The **Aquila-VL-2B** model is a vision-language model (VLM) trained based on the [LLava-one-vision](https://llava-vl.github.io/blog/2024-08-05-llava-onevision/) framework. The [Qwen2.5-1.5B-instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) model is chose as the LLM, while [siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) is utilized as the vision tower.

The model was trained on our self-built Infinity-MM dataset, which contains approximately 40 million image-text pairs. This dataset is a combination of open-source data collected from the internet and synthetic instruction data generated using open-source VLM models.


We have open-sourced [Infinity-MM](https://huggingface.co/datasets/BAAI/Infinity-MM) dataset and related resources. We hope you enjoy using them!

## News 
- `2024/11/19`:  We have released [intermediate checkpoints](https://huggingface.co/BAAI/Aquila-VL-2B-Intermediate) obtained during different stages of training. Please feel free to use these models for analysis and experimentation.
- `2024/10/25`:  The [Aquila-VL-2B](https://huggingface.co/BAAI/Aquila-VL-2B-llava-qwen) model and [Infinity-MM](https://huggingface.co/datasets/BAAI/Infinity-MM) dataset are now available.  We have also released the [technical report](https://arxiv.org/abs/2410.18558) simultaneously.

# Evaluation

We evaluated the model using the [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) tool. Whenever possible, we prioritized using the OpenAI API for test sets that support API-based evaluation.

| Benchmark                    | MiniCPM-V-2 | InternVL2-2B | XinYuan-VL-2B | Qwen2-VL-2B-Instruct | Aquila-VL-2B |
| :--------------------------- | :---------: | :----------: | :-----------: | :------------------: | :----------: |
| MMBench-EN<sub>test</sub>    |    69.4     |     73.4     |   **78.9**    |         74.9         |     78.8     |
| MMBench-CN<sub>test</sub>    |    65.9     |     70.9     |     76.1      |         73.9         |   **76.4**   |
| MMBench_V1.1<sub>test</sub>  |    65.2     |     69.7     |   **75.4**    |         72.7         |     75.2     |
| MMT-Bench<sub>test</sub>     |    54.5     |     53.3     |     57.2      |         54.8         |   **58.2**   |
| RealWorldQA                  |    55.4     |     57.3     |     63.9      |         62.6         |   **63.9**   |
| HallusionBench               |    36.8     |     38.1     |     36.0      |         41.5         |   **43.0**   |
| SEEDBench2<sub>plus</sub>    |    51.8     |     60.0     |     63.0      |         62.4         |   **63.0**   |
| LLaVABench                   |    66.1     |     64.8     |     42.4      |         52.5         |   **68.4**   |
| MMStar                       |    41.6     |     50.2     |     51.9      |         47.8         |   **54.9**   |
| POPE                         |    86.6     |     85.3     |   **89.4**    |         88.0         |     83.6     |
| MMVet                        |    44.0     |     41.1     |     42.7      |       **50.7**       |     44.3     |
| MMMU<sub>val</sub>           |    39.6     |     34.9     |     43.6      |         41.7         |   **47.4**   |
| ScienceQA<sub>test</sub>     |    80.4     |     94.1     |     86.6      |         78.1         |   **95.2**   |
| AI2D<sub>test</sub>          |    64.8     |     74.4     |     74.2      |         74.6         |   **75.0**   |
| MathVista<sub>testmini</sub> |    39.0     |     45.0     |     47.1      |         47.9         |   **59.0**   |
| MathVerse<sub>testmini</sub> |    19.8     |     24.7     |     22.2      |         21.0         |   **26.2**   |
| MathVision                   |    15.4     |     12.6     |     16.3      |         17.5         |   **18.4**   |
| DocVQA<sub>test</sub>        |    71.0     |     86.9     |     87.6      |       **89.9**       |     85.0     |
| InfoVQA<sub>test</sub>       |    40.0     |     59.5     |     59.1      |       **65.4**       |     58.3     |
| ChartQA<sub>test</sub>       |    59.6     |     71.4     |     57.1      |         73.5         |   **76.5**   |
| TextVQA<sub>val</sub>        |    74.3     |     73.5     |     77.6      |       **79.9**       |     76.4     |
| OCRVQA<sub>testcore</sub>    |    54.4     |     40.2     |     67.6      |       **68.7**       |     64.0     |
| VCR<sub>en easy</sub>        |    27.6     |     51.6     |     67.7      |         68.3         |   **70.0**   |
| OCRBench                     |     613     |     784      |      782      |       **810**        |     772      |
| Average                      |    53.5     |     58.8     |     60.9      |         62.1         |   **64.1**   |



For comparison models, evaluations were conducted in a local environment, so the scores may differ slightly from those reported in papers or on the official VLMEvalKit leaderboard.

# How to use

```python
# pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
from llava.model.builder import load_pretrained_model
from llava.mm_utils import process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from llava.conversation import conv_templates
from PIL import Image
import requests
import copy
import torch
import warnings

warnings.filterwarnings("ignore")

pretrained = "BAAI/Aquila-VL-2B-llava-qwen"

model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map)  # Add any other thing you want to pass in llava_model_args

model.eval()

# load image from url
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)

# load image from local environment
# url = "./local_image.jpg"
# image = Image.open(url)

image_tensor = process_images([image], image_processor, model.config)
image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor]

conv_template = "qwen_1_5"  # Make sure you use correct chat template for different models
question = DEFAULT_IMAGE_TOKEN + "\nWhat is shown in this image?"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()

input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
image_sizes = [image.size]

cont = model.generate(
    input_ids,
    images=image_tensor,
    image_sizes=image_sizes,
    do_sample=False,
    temperature=0,
    max_new_tokens=4096,
)

text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)

print(text_outputs)
```



# Future Plan

* We plan to train models of various sizes.
* Future training will incorporate multi-image and video data.


## **Citation**
If you find this useful, please cite the following work
```
@misc{gu2024infinitymmscalingmultimodalperformance,
      title={Infinity-MM: Scaling Multimodal Performance with Large-Scale and High-Quality Instruction Data}, 
      author={Shuhao Gu and Jialing Zhang and Siyuan Zhou and Kevin Yu and Zhaohu Xing and Liangdong Wang and Zhou Cao and Jintao Jia and Zhuoyi Zhang and Yixuan Wang and Zhenchong Hu and Bo-Wen Zhang and Jijie Li and Dong Liang and Yingli Zhao and Yulong Ao and Yaoqi Liu and Fangxiang Feng and Guang Liu},
      year={2024},
      eprint={2410.18558},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2410.18558}, 
}
```