File size: 2,481 Bytes
f3d098c 08b06ab f3d098c 1fbf245 f3d098c 1fbf245 f3d098c d77378d f3d098c 6cbc624 f3d098c d6cf52d 191ee55 f3d098c d6cf52d f3d098c 191ee55 347d85c db57085 191ee55 f3d098c 191ee55 f3d098c 411d60d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
license: other
---
![Aquila_logo](./log.jpeg)
<h4 align="center">
<p>
<b>English</b> |
<a href="https://huggingface.co/BAAI/Aquila2-7B/blob/main/README_zh.md">简体中文</a> |
<p>
</h4>
We opensource our **Aquila2** series, now including **Aquila2**, the base language models, namely **Aquila2-7B** and **Aquila2-34B**, as well as **AquilaChat2**, the chat models, namely **AquilaChat2-7B** and **AquilaChat2-34B**, as well as the long-text chat models, namely **AquilaChat2-7B-16k** and **AquilaChat2-34B-16k**
The additional details of the Aquila model will be presented in the official technical report. Please stay tuned for updates on official channels.
## Base Model Performance
<br>
<p align="center">
<img src="base_metrics.jpeg" width="1024"/>
<p>
<br>
## Quick Start Aquila2-7B
### 1. Inference
Aquila2-7B is a base model that can be used for continuation.
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import BitsAndBytesConfig
device = torch.device("cuda")
model_info = "BAAI/Aquila2-7B"
tokenizer = AutoTokenizer.from_pretrained(model_info, trust_remote_code=True)
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(model_info, trust_remote_code=True, torch_dtype=torch.float16,
# quantization_config=quantization_config, # Uncomment this line for 4bit quantization
)
model.eval()
model.to(device)
text = "杭州亚运会的亮点和期待 2023年9月23日至10月8日,杭州将举办第19届亚洲运动会"
tokens = tokenizer.encode_plus(text)['input_ids']
tokens = torch.tensor(tokens)[None,].to(device)
stop_tokens = ["###", "[UNK]", "</s>"]
with torch.no_grad():
out = model.generate(tokens, do_sample=True, max_length=512, eos_token_id=100007, bad_words_ids=[[tokenizer.encode(token)[0] for token in stop_tokens]])[0]
out = tokenizer.decode(out.cpu().numpy().tolist())
print(out)
```
## License
Aquila2 series open-source model is licensed under [ BAAI Aquila Model Licence Agreement](https://huggingface.co/BAAI/Aquila2-7B/blob/main/BAAI-Aquila-Model-License%20-Agreement.pdf) |