shunxing1234
commited on
Commit
·
1fe84ee
1
Parent(s):
3554f56
Update README.md
Browse files
README.md
CHANGED
@@ -61,33 +61,109 @@ with torch.no_grad():
|
|
61 |
print(out)
|
62 |
```
|
63 |
|
64 |
-
利用NBCE进行推理
|
65 |
|
66 |
```python
|
67 |
-
|
68 |
import torch
|
69 |
-
from
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
```
|
92 |
|
93 |
|
|
|
61 |
print(out)
|
62 |
```
|
63 |
|
64 |
+
利用[NBCE](https://github.com/bojone/NBCE/tree/main)进行推理
|
65 |
|
66 |
```python
|
67 |
+
import json
|
68 |
import torch
|
69 |
+
from transformers import AutoTokenizer
|
70 |
+
from transformers import AutoModelForCausalLM
|
71 |
+
from transformers import TopPLogitsWarper, LogitsProcessorList
|
72 |
+
import pdb
|
73 |
+
|
74 |
+
# 加载tokenizer
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
76 |
+
tokenizer.padding_side = 'left'
|
77 |
+
tokenizer.pad_token = tokenizer.unk_token
|
78 |
+
|
79 |
+
# 加载Aquila模型
|
80 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16)
|
81 |
+
device = torch.device('cuda')
|
82 |
+
model.to(device)
|
83 |
+
# 加载示例Context
|
84 |
+
from cyg_conversation import default_conversation
|
85 |
+
|
86 |
+
conv = default_conversation.copy()
|
87 |
+
contexts = json.load(open('code_text_2.json'))
|
88 |
+
|
89 |
+
question = "请解释这段程序的功能:"
|
90 |
+
batch = []
|
91 |
+
conv.append_message(conv.roles[0], question)
|
92 |
+
conv.append_message(conv.roles[1], None)
|
93 |
+
batch.append(conv.get_prompt())
|
94 |
+
# 拼接context和question
|
95 |
+
for ci,context in enumerate(contexts):
|
96 |
+
conv1 = default_conversation.copy()
|
97 |
+
conv1.append_message(conv.roles[0], context+question)
|
98 |
+
conv1.append_message(conv.roles[1], None)
|
99 |
+
batch.append(conv1.get_prompt())
|
100 |
+
print('Context长度分布:', [len(text) for text in batch])
|
101 |
+
print('Context总长度:', sum([len(text) for text in batch]))
|
102 |
+
|
103 |
+
# Top-P截断
|
104 |
+
processors = LogitsProcessorList()
|
105 |
+
processors.append(TopPLogitsWarper(0.95))
|
106 |
+
|
107 |
+
# Copied from https://github.com/bojone/NBCE/blob/main/test.py#L51-L106
|
108 |
+
@torch.inference_mode()
|
109 |
+
def generate(max_tokens):
|
110 |
+
"""Naive Bayes-based Context Extension 演示代码
|
111 |
+
"""
|
112 |
+
inputs = tokenizer(batch, padding='longest', return_tensors='pt').to(device)
|
113 |
+
input_ids = inputs.input_ids
|
114 |
+
attention_mask = inputs.attention_mask
|
115 |
+
|
116 |
+
print('input_ids', input_ids.shape)
|
117 |
+
past_key_values = None
|
118 |
+
n = input_ids.shape[0]
|
119 |
+
|
120 |
+
for i in range(max_tokens):
|
121 |
+
# 模型输出
|
122 |
+
outputs = model(input_ids=input_ids,
|
123 |
+
attention_mask=attention_mask,
|
124 |
+
return_dict=True,
|
125 |
+
use_cache=True,
|
126 |
+
past_key_values=past_key_values
|
127 |
+
)
|
128 |
+
past_key_values = outputs.past_key_values
|
129 |
+
|
130 |
+
# ===== 核心代码开始 =====
|
131 |
+
beta, eta = 0.25, 0.1
|
132 |
+
logits = outputs.logits[:, -1]
|
133 |
+
logits = logits - logits.logsumexp(dim=-1, keepdims=True)
|
134 |
+
logits = processors(input_ids, logits)
|
135 |
+
entropy = -(logits.exp() * logits.clip(-100, 0)).sum(dim=-1)
|
136 |
+
if i > 0:
|
137 |
+
entropy[k] -= eta
|
138 |
+
k = entropy[1:].argmin() + 1
|
139 |
+
logits_max = logits[k]
|
140 |
+
logits_uncond = logits[0]
|
141 |
+
logits_merged = (1 + beta) * logits_max - beta * logits_uncond
|
142 |
+
logits = torch.where(logits_uncond > -100, logits_merged, logits_max)
|
143 |
+
# ===== 核心代码结束 =====
|
144 |
+
|
145 |
+
# 构建分布,采样
|
146 |
+
# tau = 1是标准的随机采样,tau->0则是贪心搜索
|
147 |
+
# 简单起见,这里没有实现topk、topp截断
|
148 |
+
tau = 0.01
|
149 |
+
probas = torch.nn.functional.softmax(logits[None] / tau , dim=-1)
|
150 |
+
next_tokens = torch.multinomial(probas, num_samples=1).squeeze(1)
|
151 |
+
if next_tokens[0] == tokenizer.eos_token_id:
|
152 |
+
break
|
153 |
+
|
154 |
+
ret = tokenizer.batch_decode(next_tokens)
|
155 |
+
print(ret[0], flush=True, end='')
|
156 |
+
|
157 |
+
# prepare for next iteration
|
158 |
+
input_ids = next_tokens.unsqueeze(-1).tile(n, 1)
|
159 |
+
attention_mask = torch.cat([attention_mask, torch.ones(n, 1, dtype=torch.long, device=device)], dim=-1)
|
160 |
+
|
161 |
+
|
162 |
+
if __name__ == '__main__':
|
163 |
+
generate(1000)
|
164 |
+
|
165 |
+
|
166 |
+
"""
|
167 |
```
|
168 |
|
169 |
|