File size: 2,083 Bytes
cd22376 5a6aa8a 9cf0b38 3246ec9 90746f1 cd22376 1c3f880 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
license: other
---
![Aquila_logo](./log.jpeg)
<h4 align="center">
<p>
<a href="https://huggingface.co/BAAI/AquilaChat2-34B-16K/blob/main/README.md">English</a>
<b>简体中文</b> |
</p>
</h4>
# 悟道·天鹰(Aquila2)
我们开源了我们的 **Aquila2** 系列,现在包括基础语言模型 **Aquila2-7B** 和 **Aquila2-34B** ,对话模型 **AquilaChat2-7B** 和 **AquilaChat2-34B**,长文本对话模型**AquilaChat2-7B-16k** 和 **AquilaChat2-34B-16k**
悟道 · 天鹰 Aquila 模型的更多细节将在官方技术报告中呈现。请关注官方渠道更新。
* 2023.10.25 🔥 1.2版本的 **AquilaChat2-34B-16K** 模型已在[ModelHub](https://model.baai.ac.cn/model-detail/100121) 和 Hugging Face 上更新。
* AquilaChat2-34B-16K-V1.2相较于V1版本在长文本综合能力上有明显提升,接近GPT-3.5-16K。同时V1.2版本应用了更多的常规指令微调语料,使其在非长文本场景下的性能也优于V1版本。
## 快速开始使用 AquilaChat2-34B-16K
## 使用方式/How to use
### 1. 推理/Inference
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
device = torch.device("cuda")
model_info = "BAAI/AquilaChat2-34B-16K"
tokenizer = AutoTokenizer.from_pretrained(model_info, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_info, trust_remote_code=True)
model.eval()
model.to(device)
text = "请给出10个要到北京旅游的理由。"
tokens = tokenizer.encode_plus(text)['input_ids']
tokens = torch.tensor(tokens)[None,].to(device)
stop_tokens = ["###", "[UNK]", "</s>"]
with torch.no_grad():
out = model.generate(tokens, do_sample=True, max_length=512, eos_token_id=100007, bad_words_ids=[[tokenizer.encode(token)[0] for token in stop_tokens]])[0]
out = tokenizer.decode(out.cpu().numpy().tolist())
print(out)
```
## 证书/License
Aquila2系列开源模型使用 [智源Aquila系列模型许可协议](https://huggingface.co/BAAI/AquilaChat2-34B-16K/blob/main/BAAI-Aquila-Model-License%20-Agreement.pdf) |