File size: 2,766 Bytes
9a62161 35db87b 0b46f0d 35db87b 9b62e3e e98fd62 f7addd8 9b62e3e 3808bc5 35db87b a5dbc58 52a0f15 35db87b a5dbc58 f70ac68 a5dbc58 35db87b 52a0f15 a731787 52a0f15 35db87b c4997d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
license: other
---
![Aquila_logo](./log.jpeg)
<h4 align="center">
<p>
<b>English</b> |
<a href="https://huggingface.co/BAAI/AquilaChat2-34B-16K/blob/main/README_zh.md">简体中文</a>
</p>
</h4>
<p align="center">
<a href="https://github.com/FlagAI-Open/Aquila2" target="_blank">Github</a> • <a href="https://github.com/FlagAI-Open/Aquila2/blob/main/assets/wechat-qrcode.jpg" target="_blank">WeChat</a> <br>
</p>
We opensource our **Aquila2** series, now including **Aquila2**, the base language models, namely **Aquila2-7B** and **Aquila2-34B**, as well as **AquilaChat2**, the chat models, namely **AquilaChat2-7B** and **AquilaChat2-34B**, as well as the long-text chat models, namely **AquilaChat2-7B-16k** and **AquilaChat2-34B-16k**
2023.10.25 🔥 **AquilaChat2-34B-16K v1.2** is based on the previous **AquilaChat2-34B-16K**. The AquilaChat2-34B-16K-V1.2 has significantly improved long-text synthesis capabilities compared to the V1 version,
approaching the level of GPT-3.5-16K. Additionally, the V1.2 version incorporates more conventional instruction fine-tuning corpora, enhancing its performance in non-long-text scenarios compared to the V1 version.
The additional details of the Aquila model will be presented in the official technical report. Please stay tuned for updates on official channels.
## Quick Start AquilaChat2-34B-16K(Chat model)
### 1. Inference
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
device = torch.device("cuda:0")
model_info = "BAAI/AquilaChat2-34B-16k"
tokenizer = AutoTokenizer.from_pretrained(model_info, trust_remote_code=True)
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(model_info, trust_remote_code=True, torch_dtype=torch.bfloat16,
# quantization_config=quantization_config, # Uncomment this line for 4bit quantization
)
model.eval()
model.to(device)
text = "请给出10个要到北京旅游的理由。"
from predict import predict
out = predict(model, text, tokenizer=tokenizer, max_gen_len=200, top_p=0.9,
seed=123, topk=15, temperature=1.0, sft=True, device=device,
model_name="AquilaChat2-34B-16K")
print(out)
```
## License
Aquila2 series open-source model is licensed under [ BAAI Aquila Model Licence Agreement](https://huggingface.co/BAAI/AquilaChat2-34B-16K/blob/main/BAAI-Aquila-Model-License%20-Agreement.pdf) |