BAAI
/

Text Generation
Transformers
Safetensors
aquila3
conversational
custom_code
Inference Endpoints
File size: 4,167 Bytes
0c87b6a
e4ef55a
0c87b6a
4a49479
 
 
535954a
4a49479
 
 
535954a
4a49479
e4ef55a
4a49479
 
 
535954a
 
e4ef55a
4a49479
 
 
535954a
4a49479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4ef55a
 
 
 
4a49479
 
 
 
 
 
 
535954a
 
4a49479
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---

license: other
---


## Introduction

Aquila is a large language model independently developed by BAAI. Building upon the Aquila model, we continued pre-training, SFT (Supervised Fine-Tuning), and RL (Reinforcement Learning) through a multi-stage training process, ultimately resulting in the AquilaMed-RL model. This model possesses professional capabilities in the medical field and demonstrates a significant win rate when evaluated against annotated data using the GPT-4 model. The AquilaMed-RL model can perform medical triage, medication inquiries, and general Q&A. We will open-source the SFT data and RL data required for training the model. Additionally, we will release a technical report detailing our methods in developing the model for the medical field, thereby promoting the development of the open-source community.

## Model Details

The training process of the model is described as follows. For more information, please refer to our technical report. https://github.com/FlagAI-Open/industry-application/blob/main/Aquila_med_tech-report.pdf

![pipeline](http://flagchat.ks3-cn-beijing.ksyuncs.com/shixiaofeng/modelhub/AquilaMed-RL/img/pipeline.png?KSSAccessKeyId=AKLTkqVnZwpfTBiiu7O6iQHnA&Expires=2318244577&Signature=Obq391bkIAioVpi6rnely%2BSjkyE%3D)

## Evaluation

Using GPT-4 for evaluation, the win rates of our model compared to the reference answers in the annotated validation dataset are as follows.

![pipeline](http://flagchat.ks3-cn-beijing.ksyuncs.com/shixiaofeng/modelhub/AquilaMed-RL/img/eval-result.jpeg?KSSAccessKeyId=AKLTkqVnZwpfTBiiu7O6iQHnA&Expires=2318244691&Signature=dGJgHapUpmYA4NxKwernLBBFrCU%3D)

## usage

Once you have downloaded the model locally, you can use the following code for inference.

```python



import torch

from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig





model_dir = "xxx"



tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)



config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(

    model_dir, config=config, trust_remote_code=True

)

model.cuda()

model.eval()



template = "<|im_start|>system\nYou are a helpful assistant in medical domain.<|im_end|>\n<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant\n"



text = "我肚子疼怎么办?"



item_instruction = template.format(question=text)



inputs = tokenizer(item_instruction, return_tensors="pt").to("cuda")

input_ids = inputs["input_ids"]

prompt_length = len(input_ids[0])

generate_output = model.generate(

    input_ids=input_ids, do_sample=False, max_length=1024, return_dict_in_generate=True

)



response_ids = generate_output.sequences[0][prompt_length:]

predicts = tokenizer.decode(

    response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True

)



print("predict:", predicts)





"""

predict: 肚子疼可能是多种原因引起的,例如消化不良、胃炎、胃溃疡、胆囊炎、胰腺炎、肠道感染等。如果疼痛持续或加重,或者伴随有呕吐、腹泻、发热等症状,建议尽快就医。如果疼痛轻微,可以尝试以下方法缓解:



1. 饮食调整:避免油腻、辛辣、刺激性食物,多喝水,多吃易消化的食物,如米粥、面条、饼干等。



2. 休息:避免剧烈运动,保持充足的睡眠。



3. 热敷:用热水袋或毛巾敷在肚子上,可以缓解疼痛。



4. 药物:可以尝试一些非处方药,如布洛芬、阿司匹林等,但请务必在医生的指导下使用。



如果疼痛持续或加重,或者伴随有其他症状,建议尽快就医。



希望我的回答对您有所帮助。如果您还有其他问题,欢迎随时向我提问。 

"""

```

## License

Aquila series open-source model is licensed under [BAAI Aquila Model Licence Agreement](./BAAI-Aquila-Model-License -Agreement.pdf)



## Citation

If you find our work helpful, feel free to give us a cite.

```

@article{Aqulia-Med LLM,

  title={Aqulia-Med LLM: Pioneering Full-Process Open-Source Medical Language Models},

  year={2024}

}

```