--- license: apache-2.0 --- ## Introduction Aquila is a large language model trained by BAAI, and AquilaMed-RL is an industry model from Aquila language model. Based on the Aquila general pre-trained model, we continued pre-training , SFT and RL in the medical domain and obtained our AquilaMed-RL model. ## Model Details The pipeline of the training procedure is bellow, for more details you can read our technical report: https://github.com/FlagAI-Open/industry-application/blob/main/Aquila_med_tech-report.pdf ![pipeline](./img/pipeline.png) ## Evaluation ![pipeline](./img/eval-result.jpeg) ## usage when you have downloaded the model, you can use the bellow code to run the model ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig model_dir = "xxx" tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_dir, config=config, trust_remote_code=True ) model.cuda() model.eval() template = "<|im_start|>system\nYou are a helpful assistant in medical domain.<|im_end|>\n<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant\n" text = "我肚子疼怎么办?" item_instruction = template.format(question=text) inputs = tokenizer(item_instruction, return_tensors="pt").to("cuda") input_ids = inputs["input_ids"] prompt_length = len(input_ids[0]) generate_output = model.generate( input_ids=input_ids, do_sample=False, max_length=1024, return_dict_in_generate=True ) response_ids = generate_output.sequences[0][prompt_length:] predicts = tokenizer.decode( response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True ) print("predict:", predicts) """ predict: 肚子疼可能是多种原因引起的,例如消化不良、胃炎、胃溃疡、胆囊炎、胰腺炎、肠道感染等。如果疼痛持续或加重,或者伴随有呕吐、腹泻、发热等症状,建议尽快就医。如果疼痛轻微,可以尝试以下方法缓解: 1. 饮食调整:避免油腻、辛辣、刺激性食物,多喝水,多吃易消化的食物,如米粥、面条、饼干等。 2. 休息:避免剧烈运动,保持充足的睡眠。 3. 热敷:用热水袋或毛巾敷在肚子上,可以缓解疼痛。 4. 药物:可以尝试一些非处方药,如布洛芬、阿司匹林等,但请务必在医生的指导下使用。 如果疼痛持续或加重,或者伴随有其他症状,建议尽快就医。 希望我的回答对您有所帮助。如果您还有其他问题,欢迎随时向我提问。 """ ``` ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{AquilaMed, title={AquilaMed Technical Report}, year={2024} } ```