BAAI
/

Feature Extraction
Transformers
PyTorch
clip
custom_code
File size: 10,399 Bytes
03753cd
 
d827619
 
 
03753cd
d827619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b689bf
d827619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b689bf
d827619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b689bf
d827619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
license: apache-2.0
datasets:
- laion/laion2B-en
- kakaobrain/coyo-700m
---
<div align="center">

<h2><a href="https://arxiv.org/abs/2402.04252">EVA-CLIP-18B: Scaling CLIP to 18 Billion Parameters</a></h2>

[Quan Sun](https://github.com/Quan-Sun)<sup>1*</sup>, [Jinsheng Wang](https://github.com/Wolfwjs/)<sup>1*</sup>, [Qiying Yu](https://yqy2001.github.io)<sup>1,2*</sup>, [Yufeng Cui](https://scholar.google.com/citations?hl=en&user=5Ydha2EAAAAJ)<sup>1</sup>, [Fan Zhang](https://scholar.google.com/citations?user=VsJ39HMAAAAJ)<sup>1</sup>, [Xiaosong Zhang](https://zhangxiaosong18.github.io)<sup>1</sup>, [Xinlong Wang](https://www.xloong.wang/)<sup>1</sup>
 
<sup>1</sup> [BAAI](https://www.baai.ac.cn/english.html), <sup>2</sup> [THU](https://air.tsinghua.edu.cn) <br><sup>*</sup> equal contribution

[Paper](https://arxiv.org/abs/2402.04252)   |    [Github](https://github.com/baaivision/EVA/tree/master/EVA-CLIP-18B)

</div>


Scaling up contrastive language-image pretraining (CLIP) is critical for empowering both vision and multimodal models. We present EVA-CLIP-18B, the largest and most powerful open-source CLIP model to date, with 18-billion parameters. With only 6-billion training samples seen, EVA-CLIP-18B achieves an exceptional **80.7%** zero-shot top-1 accuracy averaged across 27 widely recognized image classification benchmarks, outperforming its forerunner EVA-CLIP (5-billion parameters) and other open-source CLIP models by a large margin. Remarkably, we observe a consistent performance improvement with the model size scaling of EVA-CLIP, despite maintaining a constant training dataset of 2-billion image-text pairs from LAION-2B and COYO-700M. This dataset is openly available and much smaller than the in-house datasets (e.g., DFN-5B, WebLI-10B) employed in other state-of-the-art CLIP models. EVA-CLIP-18B demonstrates the potential of EVA-style weak-to-strong visual model scaling. With our model weights made publicly available, we hope to facilitate future research in vision and multimodal foundation models.


**Table of Contents**

- [Summary of EVA-CLIP performance](#summary-of-eva-clip-performance)
- [Model Card](#model-card)
  - [EVA-CLIP-8B](#eva-clip-8b)
  - [EVA-CLIP-18B](#eva-clip-18b)
- [Usage](#usage)
- [BibTeX \& Citation](#bibtex--citation)


## Summary of EVA-CLIP performance

![summary_tab](teaser.png)

Scaling behavior of EVA-CLIP with zero-shot classification performance averaged across 27 image classification benchmarks, compared with the current state-of-the-art and largest CLIP models (224px). The diameter of each circle demonstrates the forward GFLOPs × the number of training samples seen. The performance of EVA-CLIP consistently improves as scaling up.

## Model Card

### EVA-8B and EVA-18B
<div align="center">

| model name | total #params | seen samples | pytorch weight |
|:-----------|:------:|:------:|:------:|
| `EVA_8B_psz14` | 7.5B | 6B | [PT](https://huggingface.co/BAAI/EVA-CLIP-8B/resolve/main/EVA_8B_psz14.bin) (`31.0GB`) |
| `EVA_18B_psz14.fp16` | 17.5B | 6B | [PT](https://huggingface.co/BAAI/EVA-CLIP-18B/resolve/main/EVA_18B_psz14.fp16.bin) (`35.3GB`) |


</div>

### EVA-CLIP-8B

> Image encoder MIM teacher: [EVA02_CLIP_E_psz14_plus_s9B](https://huggingface.co/QuanSun/EVA-CLIP/blob/main/EVA02_CLIP_E_psz14_s4B.pt).

<div align="center">

| model name | image enc. init. ckpt | text enc. init. ckpt | total #params | training data  |  training batch size |  gpus for training | img. cls. avg. acc. | video cls. avg. acc. | retrieval MR | hf weight | pytorch weight |
|:-----|:-----|:-----------|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|
| `EVA-CLIP-8B` | `EVA_8B_psz14` | `EVA02_CLIP_E_psz14_plus_s9B` | 8.1B | Merged-2B | 178K | 384 A100(40GB) | **79.4** | **73.6** | **86.2**| [🤗 HF](https://huggingface.co/BAAI/EVA-CLIP-8B) | [PT](https://huggingface.co/BAAI/EVA-CLIP-8B/resolve/main/EVA_CLIP_8B_psz14_s9B.pt) (`32.9GB`)|
| `EVA-CLIP-8B-448` | `EVA-CLIP-8B` | `EVA-CLIP-8B` | 8.1B | Merged-2B | 24K | 384 A100(40GB) | **80.0** | **73.7** | **86.4** | [🤗 HF](https://huggingface.co/BAAI/EVA-CLIP-8B-448) | [PT](https://huggingface.co/BAAI/EVA-CLIP-8B-448/resolve/main/EVA_CLIP_8B_psz14_plus_s0.6B.pt) (`32.9GB`)|

</div>

### EVA-CLIP-18B

> Image encoder MIM teacher: [EVA02_CLIP_E_psz14_plus_s9B](https://huggingface.co/QuanSun/EVA-CLIP/blob/main/EVA02_CLIP_E_psz14_s4B.pt).

<div align="center">

| model name | image enc. init. ckpt | text enc. init. ckpt | total #params | training data  |  training batch size |  gpus for training | img. cls. avg. acc. | video cls. avg. acc. | retrieval MR | hf weight | pytorch weight |
|:-----|:-----|:-----------|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|
| `EVA-CLIP-18B` | `EVA_18B_psz14` | `EVA02_CLIP_E_psz14_plus_s9B` | 18.1B | Merged-2B+ | 108K | 360 A100(40GB) | **80.7** | **75.0** | **87.8**| [🤗 HF](https://huggingface.co/BAAI/EVA-CLIP-18B) | [PT](https://huggingface.co/BAAI/EVA-CLIP-18B/resolve/main/EVA_CLIP_18B_psz14_s6B.fp16.pt) (`36.7GB`) |

</div>


- To construct Merged-2B, we merged 1.6 billion samples from [LAION-2B](https://laion.ai/blog/laion-5b/) dataset with 0.4 billion samples from [COYO-700M](https://github.com/kakaobrain/coyo-dataset).
- The Merged-2B+ consists of all samples from Merged-2B, along with 20 millions samples from [LAION-COCO](https://laion.ai/blog/laion-coco/) and 23 millions samples from Merged-video including [VideoCC](https://github.com/google-research-datasets/videoCC-data), [InternVid](https://huggingface.co/datasets/OpenGVLab/InternVid) and [WebVid-10M](https://maxbain.com/webvid-dataset/). Merged-video was added at the end of the training process.

**It's important to note that all results presented in the paper are evaluated using PyTorch weights. There may be differences in performance when using Hugging Face (hf) models.**

## Zero-Shot Evaluation

We use [CLIP-Benchmark](https://github.com/LAION-AI/CLIP_benchmark) to evaluate the zero-shot performance of EVA-CLIP models. Following [vissl](https://github.com/facebookresearch/vissl/blob/main/extra_scripts/datasets/create_k700_data_files.py), we evauate the zero-shot video classification using 1 middle frame. Further details regarding the evaluation datasets can be found in our paper, particularly in Table 11.

## Usage

### Huggingface Version
```python

from PIL import Image
from transformers import AutoModel, AutoConfig
from transformers import CLIPImageProcessor, pipeline, CLIPTokenizer
import torch
import torchvision.transforms as T
from torchvision.transforms import InterpolationMode

image_path = "CLIP.png"
model_name_or_path = "BAAI/EVA-CLIP-18B" # or /path/to/local/EVA-CLIP-18B
image_size = 224

processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14")

# use image processor with conig
# processor = CLIPImageProcessor(size={"shortest_edge":image_size}, do_center_crop=True, crop_size=image_size)

## you can also directly use the image processor by torchvision
## squash
# processor = T.Compose(
#     [
#         T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
#         T.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC),
#         T.ToTensor(),
#         T.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
#     ]
# )
## shortest
## processor = T.Compose(
#     [
#         T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
#         T.Resize(image_size, interpolation=InterpolationMode.BICUBIC),
#         T.CenterCrop(image_size),
#         T.ToTensor(),
#         T.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
#     ]
# )

model = AutoModel.from_pretrained(
    model_name_or_path, 
    torch_dtype=torch.float16,
    trust_remote_code=True).to('cuda').eval()

image = Image.open(image_path)
captions = ["a diagram", "a dog", "a cat"]
tokenizer = CLIPTokenizer.from_pretrained(model_name_or_path)
input_ids = tokenizer(captions,  return_tensors="pt", padding=True).input_ids.to('cuda')
input_pixels = processor(images=image, return_tensors="pt", padding=True).pixel_values.to('cuda')

with torch.no_grad(), torch.cuda.amp.autocast():
    image_features = model.encode_image(input_pixels)
    text_features = model.encode_text(input_ids)
    image_features /= image_features.norm(dim=-1, keepdim=True)
    text_features /= text_features.norm(dim=-1, keepdim=True)

label_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print(f"Label probs: {label_probs}")
```

### Pytorch version

Go to [GitHub](https://github.com/baaivision/EVA/tree/master/EVA-CLIP-18B)

```python
import torch
from eva_clip import create_model_and_transforms, get_tokenizer
from PIL import Image

model_name = "EVA-CLIP-18B" 
pretrained = "eva_clip" # or "/path/to/EVA_CLIP_18B_psz14_s6B.fp16.pt"

image_path = "CLIP.png"
caption = ["a diagram", "a dog", "a cat"]

device = "cuda" if torch.cuda.is_available() else "cpu"
model, _, processor = create_model_and_transforms(model_name, pretrained, force_custom_clip=True)
tokenizer = get_tokenizer(model_name)
model = model.to(device)

image = processor(Image.open(image_path)).unsqueeze(0).to(device)
text = tokenizer(["a diagram", "a dog", "a cat"]).to(device)

with torch.no_grad(), torch.cuda.amp.autocast():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    image_features /= image_features.norm(dim=-1, keepdim=True)
    text_features /= text_features.norm(dim=-1, keepdim=True)

    text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)

print("Label probs:", text_probs)
```

You can leverage [deepspeed.zero.Init()](https://deepspeed.readthedocs.io/en/stable/zero3.html#constructing-massive-models) with deepspeed zero stage 3 if you have limited CPU memory. For loading a pretrained checkpoint in the context of using deepspeed.zero.Init(), it's advised to use the `load_zero_partitions()` function in `eva_clip/factory.py`. 

## BibTeX & Citation

```
@article{EVA-CLIP-18B,
  title={EVA-CLIP-18B: Scaling CLIP to 18 Billion Parameters}, 
  author={Quan Sun and Jinsheng Wang and Qiying Yu and Yufeng Cui and Fan Zhang and Xiaosong Zhang and Xinlong Wang},
  journal={arXiv preprint arXiv:2402.04252},
  year={2023}
}
```