BAAI
/

File size: 8,713 Bytes
6f98381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from functools import partial
from typing import Any, List, Optional, Mapping, Callable
from collections import OrderedDict
from argparse import Namespace
import torch
from torch import nn
import torch.nn.functional as F
import torchvision.transforms as T
import PIL
import transformers
from transformers import PreTrainedModel, PreTrainedTokenizer

from .configuration_emu import EmuConfig
from .constants import *
from .modeling_llama import LlamaForCausalLM
from .visual import EVAVisionTransformer


class EmuPreTrainedModel(PreTrainedModel):
    config_class = EmuConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = False
    _no_split_modules = ["LlamaDecoderLayer", "Block"]
    _skip_keys_device_placement = "past_key_values"

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

class EmuForClsAndRegression(EmuPreTrainedModel):

    def __init__(self, config):
        super(EmuForClsAndRegression, self).__init__(config)

        self.lm = LlamaForCausalLM(config=config)

        self.lm.model.embed_tokens.padding_idx = config.pad_token_id

    def get_num_layers(self):
        return len(self.lm.model.layers)

class EmuModel(EmuPreTrainedModel):

    def __init__(self, config):
        super().__init__(config)

        vision_config = Namespace(**config.vision_config)

        self.visual = EVAVisionTransformer(
            img_size=vision_config.image_size,
            patch_size=vision_config.patch_size,
            embed_dim=vision_config.width,
            depth=vision_config.layers,
            num_heads=vision_config.width // vision_config.head_width,
            mlp_ratio=vision_config.mlp_ratio,
            qkv_bias=vision_config.qkv_bias,
            drop_path_rate=vision_config.drop_path_rate,
            norm_layer=partial(nn.LayerNorm, eps=vision_config.layer_norm_eps),
            xattn=vision_config.xattn,
            postnorm=vision_config.postnorm,
        )

        self.decoder = EmuForClsAndRegression(config)

        self.gradient_checkpointing = False
        
        self.n_query = vision_config.n_query
        self.v_query = vision_config.v_query

    @property
    def device(self):
        return next(iter(self.parameters())).device

    @property
    def dtype(self):
        return next(iter(self.parameters())).dtype

    @torch.no_grad()
    def encode_image(self, image: torch.Tensor, *, n_query=None):
        n_query = n_query if n_query is not None else self.n_query

        image_embeds = self.visual(image)
        image_embeds = image_embeds[:, 1:, :]
        b, n, c = image_embeds.shape
        sqrt_n = int(n**0.5)
        image_embeds = image_embeds.permute(0, 2, 1).view(b, c, sqrt_n, sqrt_n)

        stride = int(sqrt_n // (n_query ** 0.5))
        image_embeds = F.avg_pool2d(image_embeds, kernel_size=(stride, stride), stride=stride)
        image_embeds = image_embeds.view(b, c, -1).permute(0, 2, 1).contiguous()
        return image_embeds


class EmuForCausalLM(EmuPreTrainedModel):
    _auto_class = "AutoModelForCausalLM"

    def __init__(self, config):
        super().__init__(config)

        self.config = config
        self.model = EmuModel(config)
        # LM to EVA
        self.project_down = nn.Linear(config.hidden_size, config.d_model, bias=False)
        # EVA to LM
        self.project_up = nn.Linear(config.d_model, config.hidden_size, bias=False)

        self.n_query = self.model.n_query
        self.v_query = self.model.v_query

        self.image_placeholder = DEFAULT_IMG_TOKEN + DEFAULT_IMAGE_TOKEN * self.n_query + DEFAULT_IMG_END_TOKEN
        # temporarily borrow [gIMG] as the video frame feature placeholder.
        self.video_placeholder = DEFAULT_IMG_TOKEN + DEFAULT_gIMG_TOKEN * self.v_query + DEFAULT_IMG_END_TOKEN

    @property
    def device(self):
        return next(iter(self.parameters())).device

    @property
    def dtype(self):
        return next(iter(self.parameters())).dtype


    @torch.no_grad()
    def generate(
        self,
        input_ids,
        attention_mask,
        image: Optional[torch.Tensor] = None,
        video: Optional[torch.Tensor] = None,
        num_beams=5,
        max_new_tokens=10,
        min_len=1,
        do_sample=False,
        penalty_alpha=None,
        top_p=None,
        top_k=None,
        temperature=None,
        length_penalty=-1,
        repetition_penalty=1.0,
        **kwargs
    ):

        text_embeds = self.model.decoder.lm.model.embed_tokens(input_ids).to("cuda")
        if image is not None:
            prompt_image_embeds = self.model.encode_image(image, n_query=self.n_query)
            _, _, c = prompt_image_embeds.shape
            prompt_image_embeds = prompt_image_embeds.view(-1, c)
            prompt_image_embeds = self.project_up(prompt_image_embeds)
            image_idx = (input_ids == IMAGE)
            text_embeds[image_idx] = prompt_image_embeds.to(text_embeds.device)

        if video is not None:
            prompt_video_embeds = self.model.encode_image(video, n_query=self.v_query)
            _, _, c = prompt_video_embeds.shape
            prompt_video_embeds = prompt_video_embeds.view(-1, c)
            prompt_video_embeds = self.project_up(prompt_video_embeds)
            video_idx = (input_ids == VIDEO)
            text_embeds[video_idx] = prompt_video_embeds.to(text_embeds.device)

        outputs = self.model.decoder.lm.generate(
            inputs_embeds=text_embeds,
            attention_mask=attention_mask,
            do_sample=do_sample,
            num_beams=num_beams,
            max_new_tokens=max_new_tokens,
            min_length=min_len,
            length_penalty=length_penalty,
            repetition_penalty=repetition_penalty,
            penalty_alpha=penalty_alpha,
            top_k=top_k,
            top_p=top_p,
            temperature=temperature,
            **kwargs,
        )

        return outputs

    def prepare_image_input(self, images):
        image_size: int = self.config.vision_config['image_size']
        transform = T.Compose(
            [
                T.Resize(
                    (image_size, image_size), interpolation=T.InterpolationMode.BICUBIC
                ),
                T.ToTensor(),
                T.Normalize(OPENAI_DATASET_MEAN, OPENAI_DATASET_STD),
            ]
        )
        images = [transform(image) for image in images]
        return torch.stack(images, 0)

    def _prepare_chat_template(self, text, system_msg=""):
        text = [
            system_msg + USER_TOKEN + ": " + t + ASSISTANT_TOKEN +":"
            for t in text
        ]
        return text

    def prepare_text_input(
        self, 
        text: List[str],
        tokenizer: PreTrainedTokenizer,
        image_placeholder: str = DEFAULT_IMG_PLACEHOLDER,
        video_placeholder: str = DEFAULT_VID_PLACEHOLDER,
        ):
        text = [
            t.replace(image_placeholder, self.image_placeholder).replace(video_placeholder, self.video_placeholder)
            for t in text
        ]
        input_ids = tokenizer(text, padding="longest", return_tensors="pt")
        return input_ids
        

    def build_input_ids(
            self,
            text: List[str],
            tokenizer: PreTrainedTokenizer,
            image: Optional[List["PIL.Image"]] = None,
            video: Optional[List["PIL.Image"]] = None,
            system_msg: str = "",
            to_cuda: bool = True
        ):

        if self.config.model_version == "chat":
            text = self._prepare_chat_template(text, system_msg)

        if image is not None:
            image = self.prepare_image_input(image)
        if video is not None:
            video = self.prepare_image_input(video)
        inputs = self.prepare_text_input(text, tokenizer)
        input_ids = inputs.input_ids
        attention_mask =  inputs.attention_mask

        if to_cuda:
            input_ids = input_ids.to("cuda")
            attention_mask = attention_mask.to("cuda")
            if image is not None:
                image = image.to("cuda")
            if video is not None:
                video = video.to("cuda")


        
        return {
            'input_ids': input_ids,
            'attention_mask': attention_mask,
            'image': image,
            'video': video
        }