File size: 14,520 Bytes
f6e699f fd16886 f6e699f fd16886 f6e699f fd16886 f6e699f bf2ce69 f6e699f fd16886 f6e699f fd16886 f6e699f fd16886 f6e699f fd16886 f6e699f bf2ce69 f6e699f fd16886 f6e699f bf2ce69 f6e699f fd16886 f6e699f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
# coding=utf-8
# Copyright 2024 The Emu team, BAAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Processor class for Emu3. """
from math import ceil
import re
from typing import List, Optional, Sequence, Union
from functools import partial
from PIL import Image
import torch
from torch.nn import functional as F
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, get_image_size, to_numpy_array
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin
from transformers.tokenization_utils_base import TextInput, PreTokenizedInput
from transformers.utils import logging
from .utils_emu3 import Emu3PrefixConstrainedLogitsHelper
logger = logging.get_logger(__name__)
class Emu3Processor(ProcessorMixin):
r"""
Constructs an Emu3 processor which wraps an Emu3 image processor and an Emu3 vision vq model and an Emu3 tokenizer into a single processor.
[`Emu3Processor`] offers all the functionalities of [`Emu3VisionVQModel`] and [`Emu3Tokenizer`]. See the
[`~Emu3Processor.__call__`], [`~Emu3Processor.decode`], [`~Emu3Processor.vision_encode`], [`~Emu3Processor.vision_decode`]
for more information.
Args:
image_processor ([`Emu3VisionVQImageProcessor`]):
The image processor is a required input.
vision_tokenizer ([`Emu3VisionVQModel`]):
The vision tokenizer is a required input.
tokenizer ([`Emu3Tokenizer`]):
The tokenizer is a required input.
prefix_template(`str`, *optional*):
The prefix template for image tokens
visual_template(`Tuple[str, ...]`, *optional*):
The visual token template for image tokens
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["vision_tokenizer", "prefix_template", "visual_template"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,
vision_tokenizer=None,
tokenizer=None,
chat_template="You are a helpful assistant. USER: {image_prompt}{text_prompt}. ASSISTANT:",
prefix_template="{H}*{W}",
visual_template=("<|visual token {token_id:0>6d}|>", r"<\|visual token (\d+)\|>"),
**kwargs,
):
assert vision_tokenizer is not None, "image tokenizer can not be None"
self.vision_tokenizer = vision_tokenizer
self.prefix_template = prefix_template
self.visual_template = visual_template
self.vis_tok_spatial_factor = 2 ** (len(self.vision_tokenizer.config.ch_mult) - 1)
super().__init__(image_processor, tokenizer, chat_template=chat_template)
self.const_helper = self.build_const_helper()
@torch.no_grad()
def __call__(
self,
text: Optional[TextInput | PreTokenizedInput] = None,
image: Optional[Image.Image | List[Image.Image]] = None,
*,
mode: str = "G",
ratio: str | List[str] = "1:1",
image_area: int = 518400,
padding_image: bool = False,
**kwargs,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to Emu3Tokenizer's [`~Emu3Tokenizer.__call__`] to encode the text.
To prepare the image(s), this method forwards the `image` argument to
Emu3VisionVQImageProcessor's [`~Emu3VisionVQImageProcessor.__call__`] and Emu3VisionVQModel's [`~EmuVideoVQModel.encode`]
if `image` is not `None`. Please refer to the doctsring of the above two methods for more information.
Args:
text (`str` or `List[str]`):
The sequence or a batch of sequence to be encoded. A sequence is a string.
image (`PIL.Image.Image` or `List[PIL.Image.Image]`, *optional*):
The image or a batch of images to be prepared. An image is a PIL image.
mode (`str`, *optional*, in `G` or `U`):
task mode, `G` for generation and `U` for understanding
ratio (`str`, *optional*):
the image width-height ratio for generation
image_area (`int`, *optional*):
image area used to calcualte the generated image height and width
padding_image (`bool`, *optional*):
whether pad images to same size for fast preprocessing if they have different sizes
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model.
- **image_size** -- List of image size of input images or generated images.
"""
assert mode in ('G', 'U'), "mode must be 'G' or 'U'."
if isinstance(text, str):
text = [text]
if isinstance(image, Image.Image):
image = [image]
if not isinstance(text[0], str):
raise ValueError("`text` must be string or list of string")
image_tokens = None
if mode == 'G':
if image is not None:
raise ValueError("You have to specify only `text` in generation mode")
if isinstance(ratio, str):
ratio = [ratio] * len(text)
if len(ratio) != len(text):
raise ValueError("ratio number must match text number")
else:
if image is None:
raise ValueError("Invalid input image. Please provide exactly one PIL.Image.Image per text.")
if not isinstance(image, Sequence) and not isinstance(image, Image.Image):
raise ValueError("Invalid input image. Please provide PIL.Image.Image or List[PIL.Image.Image].")
if isinstance(image, Sequence) and not isinstance(image[0], Image.Image):
raise ValueError("Invalid input image. Please provide PIL.Image.Image or List[PIL.Image.Image].")
image_tokens = self.tokenize_image(image, padding_image=padding_image)
if len(text) != len(image_tokens):
raise ValueError("number of image must match number of text prompt")
prompt_list, size_list = [], []
for idx, text_prompt in enumerate(text):
prompt = self.tokenizer.bos_token
if mode == 'U':
h, w = image_tokens[idx].shape
imgstr = self.to_imgstr(image_tokens[idx])
image_prompt = (
self.tokenizer.boi_token +
self.prefix_template.format(H=h, W=w) +
self.tokenizer.img_token +
imgstr +
self.tokenizer.eol_token +
self.tokenizer.eof_token +
self.tokenizer.eoi_token
)
prompt += self.chat_template.format(image_prompt=image_prompt, text_prompt=text_prompt)
else:
h, w = self.calculate_generate_size(ratio[idx], image_area, self.vision_tokenizer.spatial_scale_factor)
image_prompt = (
self.tokenizer.boi_token +
self.prefix_template.format(H=h, W=w) +
self.tokenizer.img_token
)
prompt += (text_prompt + image_prompt)
prompt_list.append(prompt)
size_list.append([h, w])
text_inputs = self.tokenizer(prompt_list, **kwargs)
return BatchFeature(data={**text_inputs, "image_size": size_list}, tensor_type=kwargs.get("return_tensors"))
@torch.no_grad()
def batch_decode(self, *args, **kwargs):
docs = self.tokenizer.batch_decode(*args, **kwargs)
return [self.multimodal_decode(d) for d in docs]
@torch.no_grad()
def decode(self, *args, **kwargs):
doc = self.tokenizer.decode(*args, **kwargs)
return self.multimodal_decode(doc)
@torch.no_grad()
def vision_encode(self, *args, **kwargs):
return self.vision_tokenizer.encode(*args, **kwargs)
@torch.no_grad()
def vision_decode(self, *args, **kwargs):
return self.vision_tokenizer.decode(*args, **kwargs)
@torch.no_grad()
def multimodal_decode(self, doc):
multimodal_output = []
pattern = rf'({re.escape(self.tokenizer.boi_token)}.*?{re.escape(self.tokenizer.eoi_token)})'
chunks = re.split(pattern, doc)
for c in chunks:
if len(c) == 0:
continue
if self.tokenizer.boi_token in c:
image = []
image_rows = re.split(re.escape(self.tokenizer.eol_token), c)
for r in image_rows:
token_ids = re.findall(self.visual_template[1], r)
if len(token_ids) > 0:
row_token = [int(m) for m in token_ids]
image.append(row_token)
image = torch.tensor(image, dtype=torch.long, device=self.vision_tokenizer.device)
image = self.vision_tokenizer.decode(image[None]).float()
image = self.image_processor.postprocess(image)["pixel_values"][0]
multimodal_output.append(image)
else:
multimodal_output.append(c)
return multimodal_output if len(multimodal_output) > 1 else multimodal_output[0]
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
def to_imgstr(self, image_tokens):
image_tokens = image_tokens.cpu().numpy().tolist()
image_token_str = [
[
self.visual_template[0].format(token_id=token_id)
for token_id in token_row
]
for token_row in image_tokens
]
image_row_str = ["".join(token_row) for token_row in image_token_str]
imgstr = self.tokenizer.eol_token.join(image_row_str)
return imgstr
def calculate_generate_size(self, ratio, image_area, spatial_scale_factor):
w, h = map(int, ratio.split(":"))
current_area = h * w
target_ratio = (image_area / current_area) ** 0.5
th = int(round(h * target_ratio / spatial_scale_factor))
tw = int(round(w * target_ratio / spatial_scale_factor))
return th, tw
def tokenize_image(self, image: List[Image.Image], *, padding_image: bool = False):
is_all_same_size, prev_size = True, None
for im in image:
if prev_size is not None:
is_all_same_size &= (prev_size == im.size)
prev_size = im.size
if is_all_same_size:
image_inputs = self.image_processor(image, return_tensors="pt")["pixel_values"]
image_inputs = image_inputs.to(self.vision_tokenizer.device, self.vision_tokenizer.dtype)
image_tokens = self.vision_tokenizer.encode(image_inputs)
elif padding_image:
image_inputs = [self.image_processor(im, return_tensors="pt")["pixel_values"] for im in image]
image_shapes = [im.shape[2:] for im in image_inputs]
max_shape = (
max([im_shape[0] for im_shape in image_shapes]),
max([im_shape[1] for im_shape in image_shapes]),
)
image_inputs = [
F.pad(im_inp, (0, max_shape[1] - im_shape[1], 0, max_shape[0] - im_shape[0]))
for im_inp, im_shape in zip(image_inputs, image_shapes)
]
image_inputs = torch.cat(image_inputs, dim=0).to(self.vision_tokenizer.device, self.vision_tokenizer.dtype)
image_tokens = self.vision_tokenizer.encode(image_inputs)
image_tokens = [
im_tok[:ceil(im_shape[0] / self.vis_tok_spatial_factor), :ceil(im_shape[1] / self.vis_tok_spatial_factor)]
for im_tok, im_shape in zip(image_tokens, image_shapes)
]
else:
image_tokens = []
for im in image:
image_input = self.image_processor(im, return_tensors="pt")["pixel_values"]
image_input = image_input.to(self.vision_tokenizer.device, self.vision_tokenizer.dtype)
image_tokens.append(self.vision_tokenizer.encode(image_input).squeeze(0))
return image_tokens
def build_const_helper(self):
(
img_token,
eoi_token,
eos_token,
eol_token,
eof_token,
pad_token,
vis_start,
vis_end,
) = self.tokenizer.encode([
self.tokenizer.img_token,
self.tokenizer.eoi_token,
self.tokenizer.eos_token,
self.tokenizer.eol_token,
self.tokenizer.eof_token,
self.tokenizer.pad_token,
self.visual_template[0].format(token_id=0),
self.visual_template[0].format(token_id=self.vision_tokenizer.config.codebook_size - 1),
])
const_helper = partial(
Emu3PrefixConstrainedLogitsHelper,
img_token=img_token,
eoi_token=eoi_token,
eos_token=eos_token,
eol_token=eol_token,
eof_token=eof_token,
pad_token=pad_token,
visual_tokens=list(range(vis_start, vis_end + 1)),
)
return const_helper
def build_prefix_constrained_fn(self, height, width):
helper = self.const_helper(height=height, width=width)
return helper
|