BAAI
/

Safetensors
xlm-roberta
MonteXiaofeng commited on
Commit
39df759
·
verified ·
1 Parent(s): 886f423
.DS_Store ADDED
Binary file (10.2 kB). View file
 
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "",
3
+ "architectures": [
4
+ "XLMRobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": 0.0,
9
+ "eos_token_id": 2,
10
+ "finetuning_task": "text-classification",
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.0,
13
+ "hidden_size": 1024,
14
+ "id2label": {
15
+ "0": "LABEL_0"
16
+ },
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 4096,
19
+ "label2id": {
20
+ "LABEL_0": 0
21
+ },
22
+ "layer_norm_eps": 1e-05,
23
+ "max_position_embeddings": 8194,
24
+ "model_type": "xlm-roberta",
25
+ "num_attention_heads": 16,
26
+ "num_hidden_layers": 24,
27
+ "output_past": true,
28
+ "pad_token_id": 1,
29
+ "position_embedding_type": "absolute",
30
+ "problem_type": "regression",
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.39.0",
33
+ "type_vocab_size": 1,
34
+ "use_cache": true,
35
+ "vocab_size": 250002
36
+ }
img/.DS_Store ADDED
Binary file (6.15 kB). View file
 
img/cpt_two_stage.png ADDED
img/quality-exp.png ADDED
img/quality_train.png ADDED
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0425999578be322709ed81ed4d0b7083dcfdacc3b48ebbafeb89fe1f059f56d7
3
+ size 2271071852
readme.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 本模型在数据集[BAAI/IndustryCorpus2](https://huggingface.co/datasets/BAAI/IndustryCorpus2)中用来进行质量评估
2
+
3
+ - 为什么要筛选低质量的数据
4
+
5
+ 下面是从数据中抽取的低质量数据,可以看到这种数据对模型的学习是有害无益的
6
+
7
+ ```
8
+ {"text": "\\_\\__\n\nTranslated from *Chinese Journal of Biochemistry and Molecular Biology*, 2007, 23(2): 154--159 \\[译自:中国生物化学与分子生物学报\\]\n"}
9
+
10
+ {"text": "#ifndef _IMGBMP_H_\n#define _IMGBMP_H_\n\n#ifdef __cplusplus\nextern \"C\" {\n#endif\n\nconst uint8_t bmp[]={\n\\/\\/-- 调入了一幅图像:D:\\我的文档\\My Pictures\\12864-555.bmp --*\\/\n\\/\\/-- 宽度x高度=128x64 --\n0x00,0x06,0x0A,0xFE,0x0A,0xC6,0x00,0xE0,0x00,0xF0,0x00,0xF8,0x00,0x00,0x00,0x00,\n0x00,0x00,0xFE,0x7D,0xBB,0xC7,0xEF,0xEF,0xEF,0xEF,0xEF,0xEF,0xEF,0xC7,0xBB,0x7D,\n0xFE,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08,\n0x0C,0xFE,0xFE,0x0C,0x08,0x20,0x60,0xFE,0xFE,0x60,0x20,0x00,0x00,0x00,0x78,0x48,\n0xFE,0x82,0xBA,0xBA,0x82,0xBA,0xBA,0x82,0xBA,0xBA,0x82,0xBA,0xBA,0x82,0xFE,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xFE,0xFF,\n0x03,0x03,0x03,0x03,0x03,0x03,0x03,0x03,0x03,0xFF,0xFF,0x00,0x00,0xFE,0xFF,0x03,\n0x03,0x03,0x03,0x03,0x03,0x03,0x03,0x03,0xFF,0xFE,0x00,0x00,0x00,0x00,0xC0,0xC0,\n0xC0,0x00,0x00,0x00,0x00,0xFE,0xFF,0x03,0x03,0x03,0x03,0x03,0x03,0x03,0x03,0x03,\n0xFF,0xFE,0x00,0x00,0xFE,0xFF,0x03,0x03,0x03,0x03,0x03,0x03,0x03,0x03,0x03,0xFF,\n0xFE,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0xFF,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0xFF,0x00,0x00,0xFF,0xFF,0x0C,\n0x0C,0x0C,0x0C,0x0C,0x0C,0x0C,0x0C,0x0C,0xFF,0xFF,0x00,0x00,0x00,0x00,0xE1,0xE1,\n0xE1,0x00,0x00,0x00,0x00,0xFF,0xFF,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0xFF,0xFF,0x00,0x00,0xFF,0xFF,0x0C,0x0C,0x0C,0x0C,0x0C,0x0C,0x0C,0x0C,0x0C,0xFF,\n0xFF,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0F,0x1F,\n0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x1F,0x0F,0x00,0x00,0x0F,0x1F,0x18,\n0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x1F,0x0F,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x0F,0x1F,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,\n0x1F,0x0F,0x00,0x00,0x0F,0x1F,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x1F,\n0x0F,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0xE2,0x92,0x8A,0x86,0x00,0x00,0x7C,0x82,0x82,0x82,0x7C,\n0x00,0xFE,0x00,0x82,0x92,0xAA,0xC6,0x00,0x00,0xC0,0xC0,0x00,0x7C,0x82,0x82,0x82,\n0x7C,0x00,0x00,0x02,0x02,0x02,0xFE,0x00,0x00,0xC0,0xC0,0x00,0x7C,0x82,0x82,0x82,\n0x7C,0x00,0x00,0xFE,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x24,0xA4,0x2E,0x24,0xE4,0x24,0x2E,0xA4,0x24,0x00,0x00,0x00,0xF8,0x4A,0x4C,\n0x48,0xF8,0x48,0x4C,0x4A,0xF8,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x20,0x10,0x10,\n0x10,0x10,0x20,0xC0,0x00,0x00,0xC0,0x20,0x10,0x10,0x10,0x10,0x20,0xC0,0x00,0x00,\n0x00,0x12,0x0A,0x07,0x02,0x7F,0x02,0x07,0x0A,0x12,0x00,0x00,0x00,0x0B,0x0A,0x0A,\n0x0A,0x7F,0x0A,0x0A,0x0A,0x0B,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,\n0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x1F,0x20,0x40,0x40,\n0x40,0x50,0x20,0x5F,0x80,0x00,0x1F,0x20,0x40,0x40,0x40,0x50,0x20,0x5F,0x80,0x00,\n}; \n\n\n#ifdef __cplusplus\n}\n#endif\n\n#endif \\/\\/ _IMGBMP_H_ _SSD1306_16BIT_H_\n"}
11
+
12
+ ```
13
+
14
+ - 数据构建
15
+
16
+ 数据来源:随机采样预训练语料
17
+
18
+ 标签构建:设计数据打分细则,借助LLM模型进行多轮打分,筛选多轮打分分差小于2的数据
19
+
20
+ 数据规模:20k打分数据,中英文比例1:1
21
+
22
+ 数据打分prompt
23
+
24
+ ```
25
+ quality_prompt = """Below is an extract from a web page. Evaluate whether the page has a high natural language value and could be useful in an naturanl language task to train a good language model using the additive 5-point scoring system described below. Points are accumulated based on the satisfaction of each criterion:
26
+
27
+ - Zero score if the content contains only some meaningless content or private content, such as some random code, http url or copyright information, personally identifiable information, binary encoding of images.
28
+ - Add 1 point if the extract provides some basic information, even if it includes some useless contents like advertisements and promotional material.
29
+ - Add another point if the extract is written in good style, semantically fluent, and free of repetitive content and grammatical errors.
30
+ - Award a third point tf the extract has relatively complete semantic content, and is written in a good and fluent style, the entire content expresses something related to the same topic, rather than a patchwork of several unrelated items.
31
+ - A fourth point is awarded if the extract has obvious educational or literary value, or provides a meaningful point or content, contributes to the learning of the topic, and is written in a clear and consistent style. It may be similar to a chapter in a textbook or tutorial, providing a lot of educational content, including exercises and solutions, with little to no superfluous information. The content is coherent and focused, which is valuable for structured learning.
32
+ - A fifth point is awarded if the extract has outstanding educational value or is of very high information density, provides very high value and meaningful content, does not contain useless information, and is well suited for teaching or knowledge transfer. It contains detailed reasoning, has an easy-to-follow writing style, and can provide deep and thorough insights.
33
+
34
+
35
+ The extract:
36
+ <{EXAMPLE}>.
37
+
38
+ After examining the extract:
39
+ - Briefly justify your total score, up to 50 words.
40
+ - Conclude with the score using the format: "Quality score: <total points>"
41
+ ...
42
+ """
43
+ ```
44
+
45
+ - 模型训练
46
+
47
+ 模型选型:与分类模型类似,我们同样使用的是0.5b规模的模型,并对比试验了beg-m3和qwen-0.5b,最终实验显示bge-m3综合表现最优
48
+
49
+ 模型超参:基座bge-m3,全参数训练,lr=1e-5,batch_size=64, max_length = 2048
50
+
51
+ 模型评估:在验证集上模型与GPT4对样本质量判定一致率为90%
52
+
53
+ ![image-20240919142248242](./img/quality-exp.png)
54
+
55
+ - 高质量数据带来的训练收益
56
+
57
+ 我们为了验证高质量的数据是否能带来更高效的训练效率,在同一基座模型下,使用从未筛选之前的50b数据中抽取出高质量数据,可以认为两个数据的分布大体是一致的,进行自回归训练.
58
+
59
+ 曲线中可以看到,经过高质量数据训练的模型14B的tokens可以达到普通数据50B的模型表现,高质量的数据可以极大的提升训练效率。
60
+
61
+ ![image-20240919142732476](./img/quality_train.png)
62
+
63
+ 此外,高质量的数据可以作为预训练的退火阶段的数据加入到模型中,进一步拉升模型效果,为了验证这个猜测,我们在训练行业模型时候,在模型的退火阶段加入了筛选之后高质量数据和部分指令数据转成的预训练数据,可以看到极大提高了模型的表现。
64
+
65
+ ![cpt_two_stage](./img/cpt_two_stage.png)
66
+
67
+ 最后,高质量的预训练语料中包含着丰富的高价值知识性内容,可以从中提取出指令数据进一步提升指令数据的丰富度和知识性,这也催发了[Industry-Instruction](https://huggingface.co/datasets/BAAI/Industry-Instruction)项目的诞生,我们会在那里进行详细的说明。
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6710678b12670bc442b99edc952c4d996ae309a7020c1fa0096dd245c2faf790
3
+ size 17082821
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }
trainer_state.json ADDED
@@ -0,0 +1,1542 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9974025974025974,
5
+ "eval_steps": 500,
6
+ "global_step": 216,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 176.64862060546875,
14
+ "learning_rate": 9.999998677875842e-06,
15
+ "loss": 11.3275,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.01,
20
+ "grad_norm": 130.30368041992188,
21
+ "learning_rate": 9.999994711504062e-06,
22
+ "loss": 6.8023,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.01,
27
+ "grad_norm": 103.31938171386719,
28
+ "learning_rate": 9.99998810088676e-06,
29
+ "loss": 4.4755,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.02,
34
+ "grad_norm": 74.88383483886719,
35
+ "learning_rate": 9.999978846027432e-06,
36
+ "loss": 2.9368,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.02,
41
+ "grad_norm": 42.227046966552734,
42
+ "learning_rate": 9.999966946930972e-06,
43
+ "loss": 1.2319,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.03,
48
+ "grad_norm": 12.707175254821777,
49
+ "learning_rate": 9.999952403603674e-06,
50
+ "loss": 0.8505,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.03,
55
+ "grad_norm": 15.292159080505371,
56
+ "learning_rate": 9.999935216053227e-06,
57
+ "loss": 0.9937,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.04,
62
+ "grad_norm": 39.702308654785156,
63
+ "learning_rate": 9.999915384288723e-06,
64
+ "loss": 1.2296,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.04,
69
+ "grad_norm": 45.62909698486328,
70
+ "learning_rate": 9.999892908320647e-06,
71
+ "loss": 1.6743,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.05,
76
+ "grad_norm": 44.297847747802734,
77
+ "learning_rate": 9.999867788160888e-06,
78
+ "loss": 1.5054,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.05,
83
+ "grad_norm": 36.63005828857422,
84
+ "learning_rate": 9.99984002382273e-06,
85
+ "loss": 1.3223,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.06,
90
+ "grad_norm": 19.54110336303711,
91
+ "learning_rate": 9.999809615320857e-06,
92
+ "loss": 0.8807,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.06,
97
+ "grad_norm": 21.871042251586914,
98
+ "learning_rate": 9.999776562671349e-06,
99
+ "loss": 1.1686,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.06,
104
+ "grad_norm": 8.16606616973877,
105
+ "learning_rate": 9.999740865891686e-06,
106
+ "loss": 0.8842,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.07,
111
+ "grad_norm": 6.233722686767578,
112
+ "learning_rate": 9.99970252500075e-06,
113
+ "loss": 0.6474,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.07,
118
+ "grad_norm": 16.253034591674805,
119
+ "learning_rate": 9.999661540018812e-06,
120
+ "loss": 0.8965,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.08,
125
+ "grad_norm": 12.703817367553711,
126
+ "learning_rate": 9.99961791096755e-06,
127
+ "loss": 0.8819,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.08,
132
+ "grad_norm": 14.576752662658691,
133
+ "learning_rate": 9.999571637870035e-06,
134
+ "loss": 0.8724,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.09,
139
+ "grad_norm": 15.657022476196289,
140
+ "learning_rate": 9.999522720750743e-06,
141
+ "loss": 0.7275,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.09,
146
+ "grad_norm": 7.936721324920654,
147
+ "learning_rate": 9.999471159635538e-06,
148
+ "loss": 0.9085,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1,
153
+ "grad_norm": 12.384129524230957,
154
+ "learning_rate": 9.999416954551693e-06,
155
+ "loss": 0.5257,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.1,
160
+ "grad_norm": 7.639270782470703,
161
+ "learning_rate": 9.999360105527871e-06,
162
+ "loss": 0.765,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.11,
167
+ "grad_norm": 8.124340057373047,
168
+ "learning_rate": 9.999300612594139e-06,
169
+ "loss": 0.6521,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.11,
174
+ "grad_norm": 15.96132755279541,
175
+ "learning_rate": 9.999238475781957e-06,
176
+ "loss": 0.8599,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.12,
181
+ "grad_norm": 6.499070167541504,
182
+ "learning_rate": 9.999173695124188e-06,
183
+ "loss": 0.5235,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.12,
188
+ "grad_norm": 13.837294578552246,
189
+ "learning_rate": 9.999106270655093e-06,
190
+ "loss": 0.7003,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.12,
195
+ "grad_norm": 8.020848274230957,
196
+ "learning_rate": 9.999036202410324e-06,
197
+ "loss": 0.7127,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.13,
202
+ "grad_norm": 7.126096248626709,
203
+ "learning_rate": 9.998963490426943e-06,
204
+ "loss": 0.6233,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.13,
209
+ "grad_norm": 9.910087585449219,
210
+ "learning_rate": 9.998888134743398e-06,
211
+ "loss": 0.6812,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.14,
216
+ "grad_norm": 17.2391414642334,
217
+ "learning_rate": 9.998810135399545e-06,
218
+ "loss": 0.6481,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.14,
223
+ "grad_norm": 18.45667266845703,
224
+ "learning_rate": 9.998729492436635e-06,
225
+ "loss": 0.6672,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.15,
230
+ "grad_norm": 22.11907196044922,
231
+ "learning_rate": 9.99864620589731e-06,
232
+ "loss": 0.4814,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.15,
237
+ "grad_norm": 11.804239273071289,
238
+ "learning_rate": 9.99856027582562e-06,
239
+ "loss": 0.6971,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.16,
244
+ "grad_norm": 6.253346920013428,
245
+ "learning_rate": 9.998471702267007e-06,
246
+ "loss": 0.4941,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.16,
251
+ "grad_norm": 9.442488670349121,
252
+ "learning_rate": 9.998380485268317e-06,
253
+ "loss": 0.5258,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.17,
258
+ "grad_norm": 10.5572509765625,
259
+ "learning_rate": 9.998286624877786e-06,
260
+ "loss": 0.5023,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.17,
265
+ "grad_norm": 11.808622360229492,
266
+ "learning_rate": 9.998190121145056e-06,
267
+ "loss": 0.5166,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.18,
272
+ "grad_norm": 5.973758697509766,
273
+ "learning_rate": 9.99809097412116e-06,
274
+ "loss": 0.4458,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.18,
279
+ "grad_norm": 7.20625114440918,
280
+ "learning_rate": 9.997989183858531e-06,
281
+ "loss": 0.4228,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.18,
286
+ "grad_norm": 13.362131118774414,
287
+ "learning_rate": 9.997884750411004e-06,
288
+ "loss": 0.681,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.19,
293
+ "grad_norm": 9.089489936828613,
294
+ "learning_rate": 9.997777673833807e-06,
295
+ "loss": 0.4588,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.19,
300
+ "grad_norm": 6.178775787353516,
301
+ "learning_rate": 9.997667954183566e-06,
302
+ "loss": 0.483,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.2,
307
+ "grad_norm": 8.83432674407959,
308
+ "learning_rate": 9.997555591518307e-06,
309
+ "loss": 0.4187,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.2,
314
+ "grad_norm": 14.531988143920898,
315
+ "learning_rate": 9.997440585897455e-06,
316
+ "loss": 0.4184,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.21,
321
+ "grad_norm": 7.901028633117676,
322
+ "learning_rate": 9.997322937381829e-06,
323
+ "loss": 0.7002,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.21,
328
+ "grad_norm": 6.49567985534668,
329
+ "learning_rate": 9.997202646033649e-06,
330
+ "loss": 0.4165,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.22,
335
+ "grad_norm": 32.977596282958984,
336
+ "learning_rate": 9.997079711916527e-06,
337
+ "loss": 0.512,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.22,
342
+ "grad_norm": 7.730500221252441,
343
+ "learning_rate": 9.99695413509548e-06,
344
+ "loss": 0.5751,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.23,
349
+ "grad_norm": 7.134888172149658,
350
+ "learning_rate": 9.996825915636918e-06,
351
+ "loss": 0.5055,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.23,
356
+ "grad_norm": 11.032304763793945,
357
+ "learning_rate": 9.996695053608651e-06,
358
+ "loss": 0.5691,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.24,
363
+ "grad_norm": 28.639476776123047,
364
+ "learning_rate": 9.996561549079886e-06,
365
+ "loss": 0.4184,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.24,
370
+ "grad_norm": 8.934990882873535,
371
+ "learning_rate": 9.996425402121224e-06,
372
+ "loss": 0.4129,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.24,
377
+ "grad_norm": 8.567286491394043,
378
+ "learning_rate": 9.996286612804666e-06,
379
+ "loss": 0.5257,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.25,
384
+ "grad_norm": 12.532737731933594,
385
+ "learning_rate": 9.996145181203616e-06,
386
+ "loss": 0.4802,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.25,
391
+ "grad_norm": 7.696206092834473,
392
+ "learning_rate": 9.996001107392864e-06,
393
+ "loss": 0.5477,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.26,
398
+ "grad_norm": 7.3067426681518555,
399
+ "learning_rate": 9.995854391448607e-06,
400
+ "loss": 0.4384,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.26,
405
+ "grad_norm": 7.36694860458374,
406
+ "learning_rate": 9.995705033448435e-06,
407
+ "loss": 0.483,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.27,
412
+ "grad_norm": 16.650466918945312,
413
+ "learning_rate": 9.995553033471335e-06,
414
+ "loss": 0.5578,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.27,
419
+ "grad_norm": 11.836296081542969,
420
+ "learning_rate": 9.995398391597693e-06,
421
+ "loss": 0.4419,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.28,
426
+ "grad_norm": 6.363118648529053,
427
+ "learning_rate": 9.99524110790929e-06,
428
+ "loss": 0.424,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.28,
433
+ "grad_norm": 7.7522101402282715,
434
+ "learning_rate": 9.995081182489306e-06,
435
+ "loss": 0.4357,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.29,
440
+ "grad_norm": 7.991522312164307,
441
+ "learning_rate": 9.99491861542232e-06,
442
+ "loss": 0.437,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.29,
447
+ "grad_norm": 14.417398452758789,
448
+ "learning_rate": 9.994753406794303e-06,
449
+ "loss": 0.6347,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.3,
454
+ "grad_norm": 4.412823677062988,
455
+ "learning_rate": 9.994585556692624e-06,
456
+ "loss": 0.2691,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.3,
461
+ "grad_norm": 14.479527473449707,
462
+ "learning_rate": 9.994415065206053e-06,
463
+ "loss": 0.4691,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.3,
468
+ "grad_norm": 7.585235595703125,
469
+ "learning_rate": 9.994241932424755e-06,
470
+ "loss": 0.4724,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.31,
475
+ "grad_norm": 5.731332302093506,
476
+ "learning_rate": 9.99406615844029e-06,
477
+ "loss": 0.5277,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.31,
482
+ "grad_norm": 6.436354637145996,
483
+ "learning_rate": 9.993887743345613e-06,
484
+ "loss": 0.4632,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.32,
489
+ "grad_norm": 5.3371992111206055,
490
+ "learning_rate": 9.993706687235085e-06,
491
+ "loss": 0.3623,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.32,
496
+ "grad_norm": 10.071105003356934,
497
+ "learning_rate": 9.993522990204453e-06,
498
+ "loss": 0.4256,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.33,
503
+ "grad_norm": 12.001503944396973,
504
+ "learning_rate": 9.993336652350867e-06,
505
+ "loss": 0.5697,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.33,
510
+ "grad_norm": 10.96662712097168,
511
+ "learning_rate": 9.993147673772869e-06,
512
+ "loss": 0.3635,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.34,
517
+ "grad_norm": 8.96445083618164,
518
+ "learning_rate": 9.992956054570405e-06,
519
+ "loss": 0.3633,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.34,
524
+ "grad_norm": 10.597489356994629,
525
+ "learning_rate": 9.99276179484481e-06,
526
+ "loss": 0.5179,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.35,
531
+ "grad_norm": 37.88457107543945,
532
+ "learning_rate": 9.992564894698816e-06,
533
+ "loss": 0.3815,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.35,
538
+ "grad_norm": 10.796125411987305,
539
+ "learning_rate": 9.992365354236557e-06,
540
+ "loss": 0.3985,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.36,
545
+ "grad_norm": 6.9689860343933105,
546
+ "learning_rate": 9.992163173563559e-06,
547
+ "loss": 0.3025,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.36,
552
+ "grad_norm": 9.331859588623047,
553
+ "learning_rate": 9.991958352786744e-06,
554
+ "loss": 0.3846,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.36,
559
+ "grad_norm": 8.02157211303711,
560
+ "learning_rate": 9.991750892014433e-06,
561
+ "loss": 0.421,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.37,
566
+ "grad_norm": 18.640714645385742,
567
+ "learning_rate": 9.991540791356342e-06,
568
+ "loss": 0.6442,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.37,
573
+ "grad_norm": 7.119135856628418,
574
+ "learning_rate": 9.99132805092358e-06,
575
+ "loss": 0.4399,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.38,
580
+ "grad_norm": 9.806747436523438,
581
+ "learning_rate": 9.991112670828657e-06,
582
+ "loss": 0.3378,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.38,
587
+ "grad_norm": 7.447767734527588,
588
+ "learning_rate": 9.990894651185475e-06,
589
+ "loss": 0.4278,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.39,
594
+ "grad_norm": 28.66916847229004,
595
+ "learning_rate": 9.990673992109335e-06,
596
+ "loss": 0.4325,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.39,
601
+ "grad_norm": 13.08967399597168,
602
+ "learning_rate": 9.990450693716933e-06,
603
+ "loss": 0.3821,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.4,
608
+ "grad_norm": 11.561846733093262,
609
+ "learning_rate": 9.99022475612636e-06,
610
+ "loss": 0.4719,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.4,
615
+ "grad_norm": 11.134137153625488,
616
+ "learning_rate": 9.9899961794571e-06,
617
+ "loss": 0.4789,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.41,
622
+ "grad_norm": 5.945651531219482,
623
+ "learning_rate": 9.989764963830038e-06,
624
+ "loss": 0.5293,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.41,
629
+ "grad_norm": 6.415275573730469,
630
+ "learning_rate": 9.989531109367454e-06,
631
+ "loss": 0.489,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.42,
636
+ "grad_norm": 14.867259979248047,
637
+ "learning_rate": 9.989294616193018e-06,
638
+ "loss": 0.7109,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.42,
643
+ "grad_norm": 18.615076065063477,
644
+ "learning_rate": 9.989055484431803e-06,
645
+ "loss": 0.521,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.42,
650
+ "grad_norm": 16.754840850830078,
651
+ "learning_rate": 9.988813714210272e-06,
652
+ "loss": 0.4094,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.43,
657
+ "grad_norm": 6.629899024963379,
658
+ "learning_rate": 9.988569305656286e-06,
659
+ "loss": 0.4783,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.43,
664
+ "grad_norm": 8.339197158813477,
665
+ "learning_rate": 9.988322258899099e-06,
666
+ "loss": 0.4288,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.44,
671
+ "grad_norm": 8.170295715332031,
672
+ "learning_rate": 9.988072574069363e-06,
673
+ "loss": 0.4073,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.44,
678
+ "grad_norm": 9.301414489746094,
679
+ "learning_rate": 9.987820251299121e-06,
680
+ "loss": 0.5135,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.45,
685
+ "grad_norm": 24.828275680541992,
686
+ "learning_rate": 9.98756529072182e-06,
687
+ "loss": 0.5708,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.45,
692
+ "grad_norm": 8.960503578186035,
693
+ "learning_rate": 9.987307692472288e-06,
694
+ "loss": 0.4161,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.46,
699
+ "grad_norm": 8.696434020996094,
700
+ "learning_rate": 9.98704745668676e-06,
701
+ "loss": 0.4182,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.46,
706
+ "grad_norm": 9.047277450561523,
707
+ "learning_rate": 9.986784583502863e-06,
708
+ "loss": 0.3782,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.47,
713
+ "grad_norm": 15.280583381652832,
714
+ "learning_rate": 9.986519073059613e-06,
715
+ "loss": 0.5169,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.47,
720
+ "grad_norm": 11.528756141662598,
721
+ "learning_rate": 9.986250925497429e-06,
722
+ "loss": 0.549,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.48,
727
+ "grad_norm": 7.328488349914551,
728
+ "learning_rate": 9.98598014095812e-06,
729
+ "loss": 0.4786,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.48,
734
+ "grad_norm": 7.289353847503662,
735
+ "learning_rate": 9.985706719584888e-06,
736
+ "loss": 0.3513,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.48,
741
+ "grad_norm": 10.800015449523926,
742
+ "learning_rate": 9.985430661522333e-06,
743
+ "loss": 0.4872,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.49,
748
+ "grad_norm": 13.80408000946045,
749
+ "learning_rate": 9.985151966916451e-06,
750
+ "loss": 0.389,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.49,
755
+ "grad_norm": 13.14911937713623,
756
+ "learning_rate": 9.984870635914625e-06,
757
+ "loss": 0.4488,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.5,
762
+ "grad_norm": 8.940996170043945,
763
+ "learning_rate": 9.984586668665641e-06,
764
+ "loss": 0.389,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.5,
769
+ "grad_norm": 7.7654924392700195,
770
+ "learning_rate": 9.984300065319673e-06,
771
+ "loss": 0.3816,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.51,
776
+ "grad_norm": 6.716012954711914,
777
+ "learning_rate": 9.984010826028289e-06,
778
+ "loss": 0.3724,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.51,
783
+ "grad_norm": 16.961824417114258,
784
+ "learning_rate": 9.983718950944457e-06,
785
+ "loss": 0.5116,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.52,
790
+ "grad_norm": 8.058645248413086,
791
+ "learning_rate": 9.98342444022253e-06,
792
+ "loss": 0.4868,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.52,
797
+ "grad_norm": 7.157467365264893,
798
+ "learning_rate": 9.983127294018267e-06,
799
+ "loss": 0.3658,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.53,
804
+ "grad_norm": 6.30387544631958,
805
+ "learning_rate": 9.982827512488809e-06,
806
+ "loss": 0.422,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.53,
811
+ "grad_norm": 5.9396748542785645,
812
+ "learning_rate": 9.982525095792694e-06,
813
+ "loss": 0.3137,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.54,
818
+ "grad_norm": 9.931533813476562,
819
+ "learning_rate": 9.98222004408986e-06,
820
+ "loss": 0.3283,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.54,
825
+ "grad_norm": 8.188447952270508,
826
+ "learning_rate": 9.981912357541628e-06,
827
+ "loss": 0.3709,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.54,
832
+ "grad_norm": 7.596179485321045,
833
+ "learning_rate": 9.981602036310722e-06,
834
+ "loss": 0.4277,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.55,
839
+ "grad_norm": 7.1218767166137695,
840
+ "learning_rate": 9.981289080561253e-06,
841
+ "loss": 0.338,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.55,
846
+ "grad_norm": 12.419051170349121,
847
+ "learning_rate": 9.980973490458728e-06,
848
+ "loss": 0.3293,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.56,
853
+ "grad_norm": 11.043360710144043,
854
+ "learning_rate": 9.980655266170049e-06,
855
+ "loss": 0.4129,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.56,
860
+ "grad_norm": 20.372882843017578,
861
+ "learning_rate": 9.980334407863506e-06,
862
+ "loss": 0.4247,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.57,
867
+ "grad_norm": 7.637713432312012,
868
+ "learning_rate": 9.980010915708785e-06,
869
+ "loss": 0.3427,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.57,
874
+ "grad_norm": 8.155780792236328,
875
+ "learning_rate": 9.979684789876965e-06,
876
+ "loss": 0.3592,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.58,
881
+ "grad_norm": 12.149063110351562,
882
+ "learning_rate": 9.97935603054052e-06,
883
+ "loss": 0.3915,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.58,
888
+ "grad_norm": 18.71912956237793,
889
+ "learning_rate": 9.979024637873309e-06,
890
+ "loss": 0.5225,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.59,
895
+ "grad_norm": 11.921587944030762,
896
+ "learning_rate": 9.978690612050594e-06,
897
+ "loss": 0.3912,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.59,
902
+ "grad_norm": 11.384403228759766,
903
+ "learning_rate": 9.978353953249023e-06,
904
+ "loss": 0.4185,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.6,
909
+ "grad_norm": 15.501189231872559,
910
+ "learning_rate": 9.978014661646637e-06,
911
+ "loss": 0.2584,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.6,
916
+ "grad_norm": 6.86824893951416,
917
+ "learning_rate": 9.97767273742287e-06,
918
+ "loss": 0.2435,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.6,
923
+ "grad_norm": 10.46956729888916,
924
+ "learning_rate": 9.97732818075855e-06,
925
+ "loss": 0.2893,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.61,
930
+ "grad_norm": 8.8429594039917,
931
+ "learning_rate": 9.976980991835896e-06,
932
+ "loss": 0.3392,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.61,
937
+ "grad_norm": 10.744973182678223,
938
+ "learning_rate": 9.976631170838516e-06,
939
+ "loss": 0.381,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.62,
944
+ "grad_norm": 11.55877685546875,
945
+ "learning_rate": 9.976278717951414e-06,
946
+ "loss": 0.5731,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.62,
951
+ "grad_norm": 5.640347480773926,
952
+ "learning_rate": 9.975923633360985e-06,
953
+ "loss": 0.3342,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.63,
958
+ "grad_norm": 5.5956926345825195,
959
+ "learning_rate": 9.975565917255017e-06,
960
+ "loss": 0.257,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.63,
965
+ "grad_norm": 9.520169258117676,
966
+ "learning_rate": 9.975205569822683e-06,
967
+ "loss": 0.4152,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.64,
972
+ "grad_norm": 12.1378755569458,
973
+ "learning_rate": 9.974842591254559e-06,
974
+ "loss": 0.398,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.64,
979
+ "grad_norm": 16.691791534423828,
980
+ "learning_rate": 9.974476981742602e-06,
981
+ "loss": 0.4328,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.65,
986
+ "grad_norm": 6.700257778167725,
987
+ "learning_rate": 9.974108741480167e-06,
988
+ "loss": 0.301,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.65,
993
+ "grad_norm": 7.227187156677246,
994
+ "learning_rate": 9.973737870661995e-06,
995
+ "loss": 0.3648,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.66,
1000
+ "grad_norm": 7.791788578033447,
1001
+ "learning_rate": 9.973364369484222e-06,
1002
+ "loss": 0.4057,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.66,
1007
+ "grad_norm": 12.814080238342285,
1008
+ "learning_rate": 9.972988238144373e-06,
1009
+ "loss": 0.3357,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.66,
1014
+ "grad_norm": 6.2968316078186035,
1015
+ "learning_rate": 9.972609476841368e-06,
1016
+ "loss": 0.3597,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.67,
1021
+ "grad_norm": 8.382381439208984,
1022
+ "learning_rate": 9.972228085775512e-06,
1023
+ "loss": 0.276,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.67,
1028
+ "grad_norm": 13.944960594177246,
1029
+ "learning_rate": 9.971844065148504e-06,
1030
+ "loss": 0.327,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.68,
1035
+ "grad_norm": 18.251310348510742,
1036
+ "learning_rate": 9.971457415163435e-06,
1037
+ "loss": 0.5018,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.68,
1042
+ "grad_norm": 16.452730178833008,
1043
+ "learning_rate": 9.971068136024781e-06,
1044
+ "loss": 0.5458,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.69,
1049
+ "grad_norm": 6.843854904174805,
1050
+ "learning_rate": 9.970676227938416e-06,
1051
+ "loss": 0.3638,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.69,
1056
+ "grad_norm": 7.829722881317139,
1057
+ "learning_rate": 9.970281691111598e-06,
1058
+ "loss": 0.2724,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.7,
1063
+ "grad_norm": 10.796073913574219,
1064
+ "learning_rate": 9.96988452575298e-06,
1065
+ "loss": 0.2902,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.7,
1070
+ "grad_norm": 8.34335994720459,
1071
+ "learning_rate": 9.9694847320726e-06,
1072
+ "loss": 0.3067,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.71,
1077
+ "grad_norm": 6.335442066192627,
1078
+ "learning_rate": 9.96908231028189e-06,
1079
+ "loss": 0.3904,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.71,
1084
+ "grad_norm": 7.972692489624023,
1085
+ "learning_rate": 9.968677260593673e-06,
1086
+ "loss": 0.3659,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.72,
1091
+ "grad_norm": 7.458805561065674,
1092
+ "learning_rate": 9.968269583222155e-06,
1093
+ "loss": 0.5201,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.72,
1098
+ "grad_norm": 8.518513679504395,
1099
+ "learning_rate": 9.967859278382939e-06,
1100
+ "loss": 0.3055,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.72,
1105
+ "grad_norm": 3.929286479949951,
1106
+ "learning_rate": 9.967446346293013e-06,
1107
+ "loss": 0.2564,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.73,
1112
+ "grad_norm": 8.628119468688965,
1113
+ "learning_rate": 9.967030787170757e-06,
1114
+ "loss": 0.2978,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.73,
1119
+ "grad_norm": 7.673137187957764,
1120
+ "learning_rate": 9.96661260123594e-06,
1121
+ "loss": 0.4875,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.74,
1126
+ "grad_norm": 5.047264099121094,
1127
+ "learning_rate": 9.966191788709716e-06,
1128
+ "loss": 0.3381,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.74,
1133
+ "grad_norm": 4.241339206695557,
1134
+ "learning_rate": 9.965768349814635e-06,
1135
+ "loss": 0.2596,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.75,
1140
+ "grad_norm": 8.526716232299805,
1141
+ "learning_rate": 9.965342284774633e-06,
1142
+ "loss": 0.2951,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.75,
1147
+ "grad_norm": 8.26424503326416,
1148
+ "learning_rate": 9.964913593815032e-06,
1149
+ "loss": 0.4233,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.76,
1154
+ "grad_norm": 9.364177703857422,
1155
+ "learning_rate": 9.964482277162547e-06,
1156
+ "loss": 0.4115,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.76,
1161
+ "grad_norm": 6.392032146453857,
1162
+ "learning_rate": 9.964048335045276e-06,
1163
+ "loss": 0.2874,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.77,
1168
+ "grad_norm": 7.744924545288086,
1169
+ "learning_rate": 9.963611767692714e-06,
1170
+ "loss": 0.3342,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.77,
1175
+ "grad_norm": 7.376719951629639,
1176
+ "learning_rate": 9.963172575335735e-06,
1177
+ "loss": 0.3293,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.78,
1182
+ "grad_norm": 10.256063461303711,
1183
+ "learning_rate": 9.962730758206612e-06,
1184
+ "loss": 0.3503,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.78,
1189
+ "grad_norm": 4.126972198486328,
1190
+ "learning_rate": 9.962286316538992e-06,
1191
+ "loss": 0.1529,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.78,
1196
+ "grad_norm": 7.471617698669434,
1197
+ "learning_rate": 9.961839250567925e-06,
1198
+ "loss": 0.3363,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.79,
1203
+ "grad_norm": 6.28734827041626,
1204
+ "learning_rate": 9.961389560529835e-06,
1205
+ "loss": 0.3863,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.79,
1210
+ "grad_norm": 11.83276653289795,
1211
+ "learning_rate": 9.960937246662546e-06,
1212
+ "loss": 0.3687,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.8,
1217
+ "grad_norm": 7.140760898590088,
1218
+ "learning_rate": 9.960482309205262e-06,
1219
+ "loss": 0.3402,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.8,
1224
+ "grad_norm": 10.465855598449707,
1225
+ "learning_rate": 9.960024748398576e-06,
1226
+ "loss": 0.3292,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.81,
1231
+ "grad_norm": 12.055079460144043,
1232
+ "learning_rate": 9.959564564484469e-06,
1233
+ "loss": 0.3464,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.81,
1238
+ "grad_norm": 10.145856857299805,
1239
+ "learning_rate": 9.959101757706308e-06,
1240
+ "loss": 0.2928,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.82,
1245
+ "grad_norm": 13.143282890319824,
1246
+ "learning_rate": 9.958636328308852e-06,
1247
+ "loss": 0.3878,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.82,
1252
+ "grad_norm": 8.187761306762695,
1253
+ "learning_rate": 9.95816827653824e-06,
1254
+ "loss": 0.4443,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.83,
1259
+ "grad_norm": 8.577767372131348,
1260
+ "learning_rate": 9.957697602642002e-06,
1261
+ "loss": 0.5333,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.83,
1266
+ "grad_norm": 6.963403224945068,
1267
+ "learning_rate": 9.957224306869053e-06,
1268
+ "loss": 0.3212,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.84,
1273
+ "grad_norm": 5.820532321929932,
1274
+ "learning_rate": 9.956748389469697e-06,
1275
+ "loss": 0.4086,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.84,
1280
+ "grad_norm": 11.523386001586914,
1281
+ "learning_rate": 9.95626985069562e-06,
1282
+ "loss": 0.391,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.85,
1287
+ "grad_norm": 13.058838844299316,
1288
+ "learning_rate": 9.9557886907999e-06,
1289
+ "loss": 0.438,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.85,
1294
+ "grad_norm": 6.208215236663818,
1295
+ "learning_rate": 9.955304910036993e-06,
1296
+ "loss": 0.4455,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.85,
1301
+ "grad_norm": 7.638975620269775,
1302
+ "learning_rate": 9.954818508662754e-06,
1303
+ "loss": 0.5551,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.86,
1308
+ "grad_norm": 7.3545966148376465,
1309
+ "learning_rate": 9.954329486934411e-06,
1310
+ "loss": 0.3912,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.86,
1315
+ "grad_norm": 6.2744140625,
1316
+ "learning_rate": 9.953837845110585e-06,
1317
+ "loss": 0.4615,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.87,
1322
+ "grad_norm": 5.212122440338135,
1323
+ "learning_rate": 9.95334358345128e-06,
1324
+ "loss": 0.3151,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.87,
1329
+ "grad_norm": 11.323850631713867,
1330
+ "learning_rate": 9.952846702217886e-06,
1331
+ "loss": 0.4894,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.88,
1336
+ "grad_norm": 10.906036376953125,
1337
+ "learning_rate": 9.952347201673181e-06,
1338
+ "loss": 0.4583,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.88,
1343
+ "grad_norm": 18.138147354125977,
1344
+ "learning_rate": 9.95184508208132e-06,
1345
+ "loss": 0.5014,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.89,
1350
+ "grad_norm": 9.336864471435547,
1351
+ "learning_rate": 9.951340343707852e-06,
1352
+ "loss": 0.4421,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.89,
1357
+ "grad_norm": 6.270864963531494,
1358
+ "learning_rate": 9.95083298681971e-06,
1359
+ "loss": 0.2916,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.9,
1364
+ "grad_norm": 10.805733680725098,
1365
+ "learning_rate": 9.950323011685206e-06,
1366
+ "loss": 0.4854,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.9,
1371
+ "grad_norm": 6.747642517089844,
1372
+ "learning_rate": 9.94981041857404e-06,
1373
+ "loss": 0.2705,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.91,
1378
+ "grad_norm": 6.886074542999268,
1379
+ "learning_rate": 9.9492952077573e-06,
1380
+ "loss": 0.2599,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.91,
1385
+ "grad_norm": 18.723520278930664,
1386
+ "learning_rate": 9.948777379507453e-06,
1387
+ "loss": 0.5256,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.91,
1392
+ "grad_norm": 7.4744873046875,
1393
+ "learning_rate": 9.948256934098353e-06,
1394
+ "loss": 0.3145,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.92,
1399
+ "grad_norm": 6.738812446594238,
1400
+ "learning_rate": 9.947733871805235e-06,
1401
+ "loss": 0.324,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.92,
1406
+ "grad_norm": 7.052412986755371,
1407
+ "learning_rate": 9.947208192904722e-06,
1408
+ "loss": 0.4534,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.93,
1413
+ "grad_norm": 4.8173508644104,
1414
+ "learning_rate": 9.946679897674823e-06,
1415
+ "loss": 0.372,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.93,
1420
+ "grad_norm": 7.492809772491455,
1421
+ "learning_rate": 9.94614898639492e-06,
1422
+ "loss": 0.5313,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.94,
1427
+ "grad_norm": 7.617343425750732,
1428
+ "learning_rate": 9.945615459345789e-06,
1429
+ "loss": 0.4958,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.94,
1434
+ "grad_norm": 9.660953521728516,
1435
+ "learning_rate": 9.945079316809585e-06,
1436
+ "loss": 0.3639,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.95,
1441
+ "grad_norm": 8.472088813781738,
1442
+ "learning_rate": 9.944540559069847e-06,
1443
+ "loss": 0.3534,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.95,
1448
+ "grad_norm": 10.049768447875977,
1449
+ "learning_rate": 9.943999186411496e-06,
1450
+ "loss": 0.4788,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.96,
1455
+ "grad_norm": 6.580361366271973,
1456
+ "learning_rate": 9.943455199120836e-06,
1457
+ "loss": 0.3854,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.96,
1462
+ "grad_norm": 5.525043487548828,
1463
+ "learning_rate": 9.942908597485558e-06,
1464
+ "loss": 0.3237,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.97,
1469
+ "grad_norm": 8.51529598236084,
1470
+ "learning_rate": 9.94235938179473e-06,
1471
+ "loss": 0.2758,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.97,
1476
+ "grad_norm": 11.293745994567871,
1477
+ "learning_rate": 9.941807552338805e-06,
1478
+ "loss": 0.319,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.97,
1483
+ "grad_norm": 7.503701686859131,
1484
+ "learning_rate": 9.941253109409615e-06,
1485
+ "loss": 0.4216,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.98,
1490
+ "grad_norm": 8.137164115905762,
1491
+ "learning_rate": 9.94069605330038e-06,
1492
+ "loss": 0.391,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.98,
1497
+ "grad_norm": 5.768956661224365,
1498
+ "learning_rate": 9.940136384305699e-06,
1499
+ "loss": 0.3896,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.99,
1504
+ "grad_norm": 6.318339824676514,
1505
+ "learning_rate": 9.939574102721552e-06,
1506
+ "loss": 0.3058,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.99,
1511
+ "grad_norm": 5.358760356903076,
1512
+ "learning_rate": 9.939009208845301e-06,
1513
+ "loss": 0.3874,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 1.0,
1518
+ "grad_norm": 7.182950973510742,
1519
+ "learning_rate": 9.938441702975689e-06,
1520
+ "loss": 0.3189,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 1.0,
1525
+ "eval_loss": 0.3517548441886902,
1526
+ "eval_mse": 0.35175487080665485,
1527
+ "eval_runtime": 13.1487,
1528
+ "eval_samples_per_second": 55.519,
1529
+ "eval_steps_per_second": 27.759,
1530
+ "step": 216
1531
+ }
1532
+ ],
1533
+ "logging_steps": 1.0,
1534
+ "max_steps": 4320,
1535
+ "num_input_tokens_seen": 0,
1536
+ "num_train_epochs": 20,
1537
+ "save_steps": 500,
1538
+ "total_flos": 1.7659591890305024e+16,
1539
+ "train_batch_size": 2,
1540
+ "trial_name": null,
1541
+ "trial_params": null
1542
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e4f435f92db07a89f731afa28e06346a52fda7a409a10c393433d610d8bc101
3
+ size 5240