ldwang commited on
Commit
f436171
1 Parent(s): 51d05f5
Files changed (3) hide show
  1. README.md +2599 -114
  2. config.json +1 -1
  3. pytorch_model.bin +1 -1
README.md CHANGED
@@ -1,114 +1,2599 @@
1
- # baai-general-embedding-large-en-instruction
2
-
3
-
4
- Map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
5
- It also can be used in vector databases for LLMs.
6
- For more details please refer to our GitHub: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
7
-
8
-
9
- ## Model List
10
- | Model | Language | Description | query instruction for retrieval |
11
- |:-------------------------------|:--------:| :--------:| :--------:|
12
- | [BAAI/baai-general-embedding-large-en-instruction](https://huggingface.co/BAAI/baai-general-embedding-large-en-instruction) | English | rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
13
- | [BAAI/baai-general-embedding-large-zh-instruction](https://huggingface.co/BAAI/baai-general-embedding-large-zh-instruction) | Chinese | rank **1st** in [C-MTEB]() bechmark | `为这个句子生成表示以用于检索相关文章:` |
14
- | [BAAI/baai-general-embedding-large-zh](https://huggingface.co/BAAI/baai-general-embedding-large-zh) | Chinese | rank **2nd** in [C-MTEB]() bechmark | -- |
15
-
16
-
17
- ## Evaluation Results
18
-
19
- - **C-MTEB**:
20
- We create a benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
21
- More details and evaluation scripts see [evaluation](evaluation/README.md).
22
-
23
- | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
24
- |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
25
- | [**baai-general-embedding-large-zh-instruction**](https://huggingface.co/BAAI/baai-general-embedding-large-zh-instruction) | 1024 | **63.84** | **71.53** | **53.23** | **78.94** | 72.26 | 62.33 | 48.39 |
26
- | [baai-general-embedding-large-zh](https://huggingface.co/BAAI/baai-general-embedding-large-zh) | 1024 | 63.62 | 70.55 | 50.98 | 76.77 | **72.49** | **65.63** | **50.01** |
27
- | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 |56.91 | 48.15 | 63.99 | 70.28 | 59.34 | 47.68 |
28
- | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 |54.75 | 48.64 | 64.3 | 71.22 | 59.66 | 48.88 |
29
- | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 40.61 | 69.56 | 67.38 | 54.28 | 45.68 |
30
- | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 39.41 | 66.62 | 65.29 | 49.25 | 44.39 |
31
- | [text2vec](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 41.71 | 67.41 | 65.18 | 49.45 | 37.66 |
32
- | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 41.98 | 70.86 | 63.42 | 49.16 | 30.02 |
33
-
34
-
35
-
36
- ## Usage
37
-
38
- ### Sentence-Transformers
39
-
40
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
41
-
42
- ```
43
- pip install -U sentence-transformers
44
- ```
45
-
46
- Then you can use the model like this:
47
-
48
- ```python
49
- from sentence_transformers import SentenceTransformer
50
- sentences = ["样例数据-1", "样例数据-2"]
51
- model = SentenceTransformer('BAAI/baai-general-embedding-large-zh-instruction')
52
- embeddings = model.encode(sentences, normalize_embeddings=True)
53
- print(embeddings)
54
-
55
- #For retrieval task, when you use the model whose name ends with `-instruction`
56
- #each query should start with a instruction.
57
- queries = ["手机开不了机怎么办?"]
58
- passages = ["样例段落-1", "样例段落-2"]
59
- instruction = "为这个句子生成表示以用于检索相关文章:"
60
- model = SentenceTransformer('BAAI/baai-general-embedding-large-zh-instruction')
61
- q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
62
- p_embeddings = model.encode(passages, normalize_embeddings=True)
63
- scores = q_embeddings @ p_embeddings.T
64
- ```
65
-
66
-
67
- ### HuggingFace Transformers
68
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
69
-
70
- ```python
71
- from transformers import AutoTokenizer, AutoModel
72
- import torch
73
- # Sentences we want sentence embeddings for
74
- sentences = ["样例数据-1", "样例数据-2"]
75
-
76
- # Load model from HuggingFace Hub
77
- tokenizer = AutoTokenizer.from_pretrained('BAAI/baai-general-embedding-large-en-instruction')
78
- model = AutoModel.from_pretrained('BAAI/baai-general-embedding-large-en-instruction')
79
-
80
- # Tokenize sentences
81
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
82
- # For retrieval task, need to add an instruction to query when using the "*-instruction" model.
83
- # encoded_input = tokenizer(["为这个句子生成表示以用于检索相关文章:" + query for query in queries], padding=True, truncation=True, return_tensors='pt')
84
-
85
- # Compute token embeddings
86
- with torch.no_grad():
87
- model_output = model(**encoded_input)
88
- # Perform pooling. In this case, cls pooling.
89
- sentence_embeddings = model_output[0][:, 0]
90
-
91
- # normalize embeddings
92
- sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
93
- print("Sentence embeddings:")
94
- print(sentence_embeddings)
95
- ```
96
-
97
-
98
- ### Retrieval Task
99
- For retrieval task, when you use the model whose name ends with `-instruction`
100
- each query should start with a instruction.
101
- ```python
102
- from sentence_transformers import SentenceTransformer
103
- queries = ["手机开不了机怎么办?"]
104
- passages = ["样例段落-1", "样例段落-2"]
105
- instruction = "Represent this sentence for searching relevant passages: "
106
- model = SentenceTransformer('BAAI/baai-general-embedding-large-en-instruction')
107
- q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
108
- p_embeddings = model.encode(passages, normalize_embeddings=True)
109
- scores = q_embeddings @ p_embeddings.T
110
- ```
111
-
112
- ## Limitations
113
- This model only works for Chinese texts and long texts will be truncated to a maximum of 512 tokens.
114
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: bge-large-en
6
+ results:
7
+ - task:
8
+ type: Classification
9
+ dataset:
10
+ type: mteb/amazon_counterfactual
11
+ name: MTEB AmazonCounterfactualClassification (en)
12
+ config: en
13
+ split: test
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ metrics:
16
+ - type: accuracy
17
+ value: 76.08955223880598
18
+ - type: ap
19
+ value: 38.998374408322256
20
+ - type: f1
21
+ value: 70.01942671241072
22
+ - task:
23
+ type: Classification
24
+ dataset:
25
+ type: mteb/amazon_polarity
26
+ name: MTEB AmazonPolarityClassification
27
+ config: default
28
+ split: test
29
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
+ metrics:
31
+ - type: accuracy
32
+ value: 92.11545000000001
33
+ - type: ap
34
+ value: 88.54348935561237
35
+ - type: f1
36
+ value: 92.09140230508743
37
+ - task:
38
+ type: Classification
39
+ dataset:
40
+ type: mteb/amazon_reviews_multi
41
+ name: MTEB AmazonReviewsClassification (en)
42
+ config: en
43
+ split: test
44
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
+ metrics:
46
+ - type: accuracy
47
+ value: 47.022
48
+ - type: f1
49
+ value: 46.6104601802574
50
+ - task:
51
+ type: Retrieval
52
+ dataset:
53
+ type: arguana
54
+ name: MTEB ArguAna
55
+ config: default
56
+ split: test
57
+ revision: None
58
+ metrics:
59
+ - type: map_at_1
60
+ value: 39.972
61
+ - type: map_at_10
62
+ value: 54.874
63
+ - type: map_at_100
64
+ value: 55.53399999999999
65
+ - type: map_at_1000
66
+ value: 55.539
67
+ - type: map_at_3
68
+ value: 51.031000000000006
69
+ - type: map_at_5
70
+ value: 53.342999999999996
71
+ - type: mrr_at_1
72
+ value: 40.541
73
+ - type: mrr_at_10
74
+ value: 55.096000000000004
75
+ - type: mrr_at_100
76
+ value: 55.75599999999999
77
+ - type: mrr_at_1000
78
+ value: 55.761
79
+ - type: mrr_at_3
80
+ value: 51.221000000000004
81
+ - type: mrr_at_5
82
+ value: 53.568000000000005
83
+ - type: ndcg_at_1
84
+ value: 39.972
85
+ - type: ndcg_at_10
86
+ value: 62.456999999999994
87
+ - type: ndcg_at_100
88
+ value: 65.262
89
+ - type: ndcg_at_1000
90
+ value: 65.389
91
+ - type: ndcg_at_3
92
+ value: 54.673
93
+ - type: ndcg_at_5
94
+ value: 58.80499999999999
95
+ - type: precision_at_1
96
+ value: 39.972
97
+ - type: precision_at_10
98
+ value: 8.634
99
+ - type: precision_at_100
100
+ value: 0.9860000000000001
101
+ - type: precision_at_1000
102
+ value: 0.1
103
+ - type: precision_at_3
104
+ value: 21.740000000000002
105
+ - type: precision_at_5
106
+ value: 15.036
107
+ - type: recall_at_1
108
+ value: 39.972
109
+ - type: recall_at_10
110
+ value: 86.344
111
+ - type: recall_at_100
112
+ value: 98.578
113
+ - type: recall_at_1000
114
+ value: 99.57300000000001
115
+ - type: recall_at_3
116
+ value: 65.22
117
+ - type: recall_at_5
118
+ value: 75.178
119
+ - task:
120
+ type: Clustering
121
+ dataset:
122
+ type: mteb/arxiv-clustering-p2p
123
+ name: MTEB ArxivClusteringP2P
124
+ config: default
125
+ split: test
126
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
127
+ metrics:
128
+ - type: v_measure
129
+ value: 48.94652870403906
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ type: mteb/arxiv-clustering-s2s
134
+ name: MTEB ArxivClusteringS2S
135
+ config: default
136
+ split: test
137
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
138
+ metrics:
139
+ - type: v_measure
140
+ value: 43.17257160340209
141
+ - task:
142
+ type: Reranking
143
+ dataset:
144
+ type: mteb/askubuntudupquestions-reranking
145
+ name: MTEB AskUbuntuDupQuestions
146
+ config: default
147
+ split: test
148
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
149
+ metrics:
150
+ - type: map
151
+ value: 63.97867370559182
152
+ - type: mrr
153
+ value: 77.00820032537484
154
+ - task:
155
+ type: STS
156
+ dataset:
157
+ type: mteb/biosses-sts
158
+ name: MTEB BIOSSES
159
+ config: default
160
+ split: test
161
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
162
+ metrics:
163
+ - type: cos_sim_pearson
164
+ value: 80.00986015960616
165
+ - type: cos_sim_spearman
166
+ value: 80.36387933827882
167
+ - type: euclidean_pearson
168
+ value: 80.32305287257296
169
+ - type: euclidean_spearman
170
+ value: 82.0524720308763
171
+ - type: manhattan_pearson
172
+ value: 80.19847473906454
173
+ - type: manhattan_spearman
174
+ value: 81.87957652506985
175
+ - task:
176
+ type: Classification
177
+ dataset:
178
+ type: mteb/banking77
179
+ name: MTEB Banking77Classification
180
+ config: default
181
+ split: test
182
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
183
+ metrics:
184
+ - type: accuracy
185
+ value: 87.8603896103896
186
+ - type: f1
187
+ value: 87.84830089792524
188
+ - task:
189
+ type: Clustering
190
+ dataset:
191
+ type: mteb/biorxiv-clustering-p2p
192
+ name: MTEB BiorxivClusteringP2P
193
+ config: default
194
+ split: test
195
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
196
+ metrics:
197
+ - type: v_measure
198
+ value: 41.36932844640705
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ type: mteb/biorxiv-clustering-s2s
203
+ name: MTEB BiorxivClusteringS2S
204
+ config: default
205
+ split: test
206
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
207
+ metrics:
208
+ - type: v_measure
209
+ value: 38.34983239611985
210
+ - task:
211
+ type: Retrieval
212
+ dataset:
213
+ type: BeIR/cqadupstack
214
+ name: MTEB CQADupstackAndroidRetrieval
215
+ config: default
216
+ split: test
217
+ revision: None
218
+ metrics:
219
+ - type: map_at_1
220
+ value: 32.257999999999996
221
+ - type: map_at_10
222
+ value: 42.937
223
+ - type: map_at_100
224
+ value: 44.406
225
+ - type: map_at_1000
226
+ value: 44.536
227
+ - type: map_at_3
228
+ value: 39.22
229
+ - type: map_at_5
230
+ value: 41.458
231
+ - type: mrr_at_1
232
+ value: 38.769999999999996
233
+ - type: mrr_at_10
234
+ value: 48.701
235
+ - type: mrr_at_100
236
+ value: 49.431000000000004
237
+ - type: mrr_at_1000
238
+ value: 49.476
239
+ - type: mrr_at_3
240
+ value: 45.875
241
+ - type: mrr_at_5
242
+ value: 47.67
243
+ - type: ndcg_at_1
244
+ value: 38.769999999999996
245
+ - type: ndcg_at_10
246
+ value: 49.35
247
+ - type: ndcg_at_100
248
+ value: 54.618
249
+ - type: ndcg_at_1000
250
+ value: 56.655
251
+ - type: ndcg_at_3
252
+ value: 43.826
253
+ - type: ndcg_at_5
254
+ value: 46.72
255
+ - type: precision_at_1
256
+ value: 38.769999999999996
257
+ - type: precision_at_10
258
+ value: 9.328
259
+ - type: precision_at_100
260
+ value: 1.484
261
+ - type: precision_at_1000
262
+ value: 0.196
263
+ - type: precision_at_3
264
+ value: 20.649
265
+ - type: precision_at_5
266
+ value: 15.25
267
+ - type: recall_at_1
268
+ value: 32.257999999999996
269
+ - type: recall_at_10
270
+ value: 61.849
271
+ - type: recall_at_100
272
+ value: 83.70400000000001
273
+ - type: recall_at_1000
274
+ value: 96.344
275
+ - type: recall_at_3
276
+ value: 46.037
277
+ - type: recall_at_5
278
+ value: 53.724000000000004
279
+ - task:
280
+ type: Retrieval
281
+ dataset:
282
+ type: BeIR/cqadupstack
283
+ name: MTEB CQADupstackEnglishRetrieval
284
+ config: default
285
+ split: test
286
+ revision: None
287
+ metrics:
288
+ - type: map_at_1
289
+ value: 32.979
290
+ - type: map_at_10
291
+ value: 43.376999999999995
292
+ - type: map_at_100
293
+ value: 44.667
294
+ - type: map_at_1000
295
+ value: 44.794
296
+ - type: map_at_3
297
+ value: 40.461999999999996
298
+ - type: map_at_5
299
+ value: 42.138
300
+ - type: mrr_at_1
301
+ value: 41.146
302
+ - type: mrr_at_10
303
+ value: 49.575
304
+ - type: mrr_at_100
305
+ value: 50.187000000000005
306
+ - type: mrr_at_1000
307
+ value: 50.231
308
+ - type: mrr_at_3
309
+ value: 47.601
310
+ - type: mrr_at_5
311
+ value: 48.786
312
+ - type: ndcg_at_1
313
+ value: 41.146
314
+ - type: ndcg_at_10
315
+ value: 48.957
316
+ - type: ndcg_at_100
317
+ value: 53.296
318
+ - type: ndcg_at_1000
319
+ value: 55.254000000000005
320
+ - type: ndcg_at_3
321
+ value: 45.235
322
+ - type: ndcg_at_5
323
+ value: 47.014
324
+ - type: precision_at_1
325
+ value: 41.146
326
+ - type: precision_at_10
327
+ value: 9.107999999999999
328
+ - type: precision_at_100
329
+ value: 1.481
330
+ - type: precision_at_1000
331
+ value: 0.193
332
+ - type: precision_at_3
333
+ value: 21.783
334
+ - type: precision_at_5
335
+ value: 15.274
336
+ - type: recall_at_1
337
+ value: 32.979
338
+ - type: recall_at_10
339
+ value: 58.167
340
+ - type: recall_at_100
341
+ value: 76.374
342
+ - type: recall_at_1000
343
+ value: 88.836
344
+ - type: recall_at_3
345
+ value: 46.838
346
+ - type: recall_at_5
347
+ value: 52.006
348
+ - task:
349
+ type: Retrieval
350
+ dataset:
351
+ type: BeIR/cqadupstack
352
+ name: MTEB CQADupstackGamingRetrieval
353
+ config: default
354
+ split: test
355
+ revision: None
356
+ metrics:
357
+ - type: map_at_1
358
+ value: 40.326
359
+ - type: map_at_10
360
+ value: 53.468
361
+ - type: map_at_100
362
+ value: 54.454
363
+ - type: map_at_1000
364
+ value: 54.508
365
+ - type: map_at_3
366
+ value: 50.12799999999999
367
+ - type: map_at_5
368
+ value: 51.991
369
+ - type: mrr_at_1
370
+ value: 46.394999999999996
371
+ - type: mrr_at_10
372
+ value: 57.016999999999996
373
+ - type: mrr_at_100
374
+ value: 57.67099999999999
375
+ - type: mrr_at_1000
376
+ value: 57.699999999999996
377
+ - type: mrr_at_3
378
+ value: 54.65
379
+ - type: mrr_at_5
380
+ value: 56.101
381
+ - type: ndcg_at_1
382
+ value: 46.394999999999996
383
+ - type: ndcg_at_10
384
+ value: 59.507
385
+ - type: ndcg_at_100
386
+ value: 63.31099999999999
387
+ - type: ndcg_at_1000
388
+ value: 64.388
389
+ - type: ndcg_at_3
390
+ value: 54.04600000000001
391
+ - type: ndcg_at_5
392
+ value: 56.723
393
+ - type: precision_at_1
394
+ value: 46.394999999999996
395
+ - type: precision_at_10
396
+ value: 9.567
397
+ - type: precision_at_100
398
+ value: 1.234
399
+ - type: precision_at_1000
400
+ value: 0.13699999999999998
401
+ - type: precision_at_3
402
+ value: 24.117
403
+ - type: precision_at_5
404
+ value: 16.426
405
+ - type: recall_at_1
406
+ value: 40.326
407
+ - type: recall_at_10
408
+ value: 73.763
409
+ - type: recall_at_100
410
+ value: 89.927
411
+ - type: recall_at_1000
412
+ value: 97.509
413
+ - type: recall_at_3
414
+ value: 59.34
415
+ - type: recall_at_5
416
+ value: 65.915
417
+ - task:
418
+ type: Retrieval
419
+ dataset:
420
+ type: BeIR/cqadupstack
421
+ name: MTEB CQADupstackGisRetrieval
422
+ config: default
423
+ split: test
424
+ revision: None
425
+ metrics:
426
+ - type: map_at_1
427
+ value: 26.661
428
+ - type: map_at_10
429
+ value: 35.522
430
+ - type: map_at_100
431
+ value: 36.619
432
+ - type: map_at_1000
433
+ value: 36.693999999999996
434
+ - type: map_at_3
435
+ value: 33.154
436
+ - type: map_at_5
437
+ value: 34.353
438
+ - type: mrr_at_1
439
+ value: 28.362
440
+ - type: mrr_at_10
441
+ value: 37.403999999999996
442
+ - type: mrr_at_100
443
+ value: 38.374
444
+ - type: mrr_at_1000
445
+ value: 38.428000000000004
446
+ - type: mrr_at_3
447
+ value: 35.235
448
+ - type: mrr_at_5
449
+ value: 36.269
450
+ - type: ndcg_at_1
451
+ value: 28.362
452
+ - type: ndcg_at_10
453
+ value: 40.431
454
+ - type: ndcg_at_100
455
+ value: 45.745999999999995
456
+ - type: ndcg_at_1000
457
+ value: 47.493
458
+ - type: ndcg_at_3
459
+ value: 35.733
460
+ - type: ndcg_at_5
461
+ value: 37.722
462
+ - type: precision_at_1
463
+ value: 28.362
464
+ - type: precision_at_10
465
+ value: 6.101999999999999
466
+ - type: precision_at_100
467
+ value: 0.922
468
+ - type: precision_at_1000
469
+ value: 0.11100000000000002
470
+ - type: precision_at_3
471
+ value: 15.140999999999998
472
+ - type: precision_at_5
473
+ value: 10.305
474
+ - type: recall_at_1
475
+ value: 26.661
476
+ - type: recall_at_10
477
+ value: 53.675
478
+ - type: recall_at_100
479
+ value: 77.891
480
+ - type: recall_at_1000
481
+ value: 90.72
482
+ - type: recall_at_3
483
+ value: 40.751
484
+ - type: recall_at_5
485
+ value: 45.517
486
+ - task:
487
+ type: Retrieval
488
+ dataset:
489
+ type: BeIR/cqadupstack
490
+ name: MTEB CQADupstackMathematicaRetrieval
491
+ config: default
492
+ split: test
493
+ revision: None
494
+ metrics:
495
+ - type: map_at_1
496
+ value: 18.886
497
+ - type: map_at_10
498
+ value: 27.288
499
+ - type: map_at_100
500
+ value: 28.327999999999996
501
+ - type: map_at_1000
502
+ value: 28.438999999999997
503
+ - type: map_at_3
504
+ value: 24.453
505
+ - type: map_at_5
506
+ value: 25.959
507
+ - type: mrr_at_1
508
+ value: 23.134
509
+ - type: mrr_at_10
510
+ value: 32.004
511
+ - type: mrr_at_100
512
+ value: 32.789
513
+ - type: mrr_at_1000
514
+ value: 32.857
515
+ - type: mrr_at_3
516
+ value: 29.084
517
+ - type: mrr_at_5
518
+ value: 30.614
519
+ - type: ndcg_at_1
520
+ value: 23.134
521
+ - type: ndcg_at_10
522
+ value: 32.852
523
+ - type: ndcg_at_100
524
+ value: 37.972
525
+ - type: ndcg_at_1000
526
+ value: 40.656
527
+ - type: ndcg_at_3
528
+ value: 27.435
529
+ - type: ndcg_at_5
530
+ value: 29.823
531
+ - type: precision_at_1
532
+ value: 23.134
533
+ - type: precision_at_10
534
+ value: 6.032
535
+ - type: precision_at_100
536
+ value: 0.9950000000000001
537
+ - type: precision_at_1000
538
+ value: 0.136
539
+ - type: precision_at_3
540
+ value: 13.017999999999999
541
+ - type: precision_at_5
542
+ value: 9.501999999999999
543
+ - type: recall_at_1
544
+ value: 18.886
545
+ - type: recall_at_10
546
+ value: 45.34
547
+ - type: recall_at_100
548
+ value: 67.947
549
+ - type: recall_at_1000
550
+ value: 86.924
551
+ - type: recall_at_3
552
+ value: 30.535
553
+ - type: recall_at_5
554
+ value: 36.451
555
+ - task:
556
+ type: Retrieval
557
+ dataset:
558
+ type: BeIR/cqadupstack
559
+ name: MTEB CQADupstackPhysicsRetrieval
560
+ config: default
561
+ split: test
562
+ revision: None
563
+ metrics:
564
+ - type: map_at_1
565
+ value: 28.994999999999997
566
+ - type: map_at_10
567
+ value: 40.04
568
+ - type: map_at_100
569
+ value: 41.435
570
+ - type: map_at_1000
571
+ value: 41.537
572
+ - type: map_at_3
573
+ value: 37.091
574
+ - type: map_at_5
575
+ value: 38.802
576
+ - type: mrr_at_1
577
+ value: 35.034
578
+ - type: mrr_at_10
579
+ value: 45.411
580
+ - type: mrr_at_100
581
+ value: 46.226
582
+ - type: mrr_at_1000
583
+ value: 46.27
584
+ - type: mrr_at_3
585
+ value: 43.086
586
+ - type: mrr_at_5
587
+ value: 44.452999999999996
588
+ - type: ndcg_at_1
589
+ value: 35.034
590
+ - type: ndcg_at_10
591
+ value: 46.076
592
+ - type: ndcg_at_100
593
+ value: 51.483000000000004
594
+ - type: ndcg_at_1000
595
+ value: 53.433
596
+ - type: ndcg_at_3
597
+ value: 41.304
598
+ - type: ndcg_at_5
599
+ value: 43.641999999999996
600
+ - type: precision_at_1
601
+ value: 35.034
602
+ - type: precision_at_10
603
+ value: 8.258000000000001
604
+ - type: precision_at_100
605
+ value: 1.268
606
+ - type: precision_at_1000
607
+ value: 0.161
608
+ - type: precision_at_3
609
+ value: 19.57
610
+ - type: precision_at_5
611
+ value: 13.782
612
+ - type: recall_at_1
613
+ value: 28.994999999999997
614
+ - type: recall_at_10
615
+ value: 58.538000000000004
616
+ - type: recall_at_100
617
+ value: 80.72399999999999
618
+ - type: recall_at_1000
619
+ value: 93.462
620
+ - type: recall_at_3
621
+ value: 45.199
622
+ - type: recall_at_5
623
+ value: 51.237
624
+ - task:
625
+ type: Retrieval
626
+ dataset:
627
+ type: BeIR/cqadupstack
628
+ name: MTEB CQADupstackProgrammersRetrieval
629
+ config: default
630
+ split: test
631
+ revision: None
632
+ metrics:
633
+ - type: map_at_1
634
+ value: 24.795
635
+ - type: map_at_10
636
+ value: 34.935
637
+ - type: map_at_100
638
+ value: 36.306
639
+ - type: map_at_1000
640
+ value: 36.417
641
+ - type: map_at_3
642
+ value: 31.831
643
+ - type: map_at_5
644
+ value: 33.626
645
+ - type: mrr_at_1
646
+ value: 30.479
647
+ - type: mrr_at_10
648
+ value: 40.225
649
+ - type: mrr_at_100
650
+ value: 41.055
651
+ - type: mrr_at_1000
652
+ value: 41.114
653
+ - type: mrr_at_3
654
+ value: 37.538
655
+ - type: mrr_at_5
656
+ value: 39.073
657
+ - type: ndcg_at_1
658
+ value: 30.479
659
+ - type: ndcg_at_10
660
+ value: 40.949999999999996
661
+ - type: ndcg_at_100
662
+ value: 46.525
663
+ - type: ndcg_at_1000
664
+ value: 48.892
665
+ - type: ndcg_at_3
666
+ value: 35.79
667
+ - type: ndcg_at_5
668
+ value: 38.237
669
+ - type: precision_at_1
670
+ value: 30.479
671
+ - type: precision_at_10
672
+ value: 7.6259999999999994
673
+ - type: precision_at_100
674
+ value: 1.203
675
+ - type: precision_at_1000
676
+ value: 0.157
677
+ - type: precision_at_3
678
+ value: 17.199
679
+ - type: precision_at_5
680
+ value: 12.466000000000001
681
+ - type: recall_at_1
682
+ value: 24.795
683
+ - type: recall_at_10
684
+ value: 53.421
685
+ - type: recall_at_100
686
+ value: 77.189
687
+ - type: recall_at_1000
688
+ value: 93.407
689
+ - type: recall_at_3
690
+ value: 39.051
691
+ - type: recall_at_5
692
+ value: 45.462
693
+ - task:
694
+ type: Retrieval
695
+ dataset:
696
+ type: BeIR/cqadupstack
697
+ name: MTEB CQADupstackRetrieval
698
+ config: default
699
+ split: test
700
+ revision: None
701
+ metrics:
702
+ - type: map_at_1
703
+ value: 26.853499999999997
704
+ - type: map_at_10
705
+ value: 36.20433333333333
706
+ - type: map_at_100
707
+ value: 37.40391666666667
708
+ - type: map_at_1000
709
+ value: 37.515
710
+ - type: map_at_3
711
+ value: 33.39975
712
+ - type: map_at_5
713
+ value: 34.9665
714
+ - type: mrr_at_1
715
+ value: 31.62666666666667
716
+ - type: mrr_at_10
717
+ value: 40.436749999999996
718
+ - type: mrr_at_100
719
+ value: 41.260333333333335
720
+ - type: mrr_at_1000
721
+ value: 41.31525
722
+ - type: mrr_at_3
723
+ value: 38.06733333333332
724
+ - type: mrr_at_5
725
+ value: 39.41541666666667
726
+ - type: ndcg_at_1
727
+ value: 31.62666666666667
728
+ - type: ndcg_at_10
729
+ value: 41.63341666666667
730
+ - type: ndcg_at_100
731
+ value: 46.704166666666666
732
+ - type: ndcg_at_1000
733
+ value: 48.88483333333335
734
+ - type: ndcg_at_3
735
+ value: 36.896
736
+ - type: ndcg_at_5
737
+ value: 39.11891666666667
738
+ - type: precision_at_1
739
+ value: 31.62666666666667
740
+ - type: precision_at_10
741
+ value: 7.241083333333333
742
+ - type: precision_at_100
743
+ value: 1.1488333333333334
744
+ - type: precision_at_1000
745
+ value: 0.15250000000000002
746
+ - type: precision_at_3
747
+ value: 16.908333333333335
748
+ - type: precision_at_5
749
+ value: 11.942833333333333
750
+ - type: recall_at_1
751
+ value: 26.853499999999997
752
+ - type: recall_at_10
753
+ value: 53.461333333333336
754
+ - type: recall_at_100
755
+ value: 75.63633333333333
756
+ - type: recall_at_1000
757
+ value: 90.67016666666666
758
+ - type: recall_at_3
759
+ value: 40.24241666666667
760
+ - type: recall_at_5
761
+ value: 45.98608333333333
762
+ - task:
763
+ type: Retrieval
764
+ dataset:
765
+ type: BeIR/cqadupstack
766
+ name: MTEB CQADupstackStatsRetrieval
767
+ config: default
768
+ split: test
769
+ revision: None
770
+ metrics:
771
+ - type: map_at_1
772
+ value: 25.241999999999997
773
+ - type: map_at_10
774
+ value: 31.863999999999997
775
+ - type: map_at_100
776
+ value: 32.835
777
+ - type: map_at_1000
778
+ value: 32.928000000000004
779
+ - type: map_at_3
780
+ value: 29.694
781
+ - type: map_at_5
782
+ value: 30.978
783
+ - type: mrr_at_1
784
+ value: 28.374
785
+ - type: mrr_at_10
786
+ value: 34.814
787
+ - type: mrr_at_100
788
+ value: 35.596
789
+ - type: mrr_at_1000
790
+ value: 35.666
791
+ - type: mrr_at_3
792
+ value: 32.745000000000005
793
+ - type: mrr_at_5
794
+ value: 34.049
795
+ - type: ndcg_at_1
796
+ value: 28.374
797
+ - type: ndcg_at_10
798
+ value: 35.969
799
+ - type: ndcg_at_100
800
+ value: 40.708
801
+ - type: ndcg_at_1000
802
+ value: 43.08
803
+ - type: ndcg_at_3
804
+ value: 31.968999999999998
805
+ - type: ndcg_at_5
806
+ value: 34.069
807
+ - type: precision_at_1
808
+ value: 28.374
809
+ - type: precision_at_10
810
+ value: 5.583
811
+ - type: precision_at_100
812
+ value: 0.8630000000000001
813
+ - type: precision_at_1000
814
+ value: 0.11299999999999999
815
+ - type: precision_at_3
816
+ value: 13.547999999999998
817
+ - type: precision_at_5
818
+ value: 9.447999999999999
819
+ - type: recall_at_1
820
+ value: 25.241999999999997
821
+ - type: recall_at_10
822
+ value: 45.711
823
+ - type: recall_at_100
824
+ value: 67.482
825
+ - type: recall_at_1000
826
+ value: 85.13300000000001
827
+ - type: recall_at_3
828
+ value: 34.622
829
+ - type: recall_at_5
830
+ value: 40.043
831
+ - task:
832
+ type: Retrieval
833
+ dataset:
834
+ type: BeIR/cqadupstack
835
+ name: MTEB CQADupstackTexRetrieval
836
+ config: default
837
+ split: test
838
+ revision: None
839
+ metrics:
840
+ - type: map_at_1
841
+ value: 17.488999999999997
842
+ - type: map_at_10
843
+ value: 25.142999999999997
844
+ - type: map_at_100
845
+ value: 26.244
846
+ - type: map_at_1000
847
+ value: 26.363999999999997
848
+ - type: map_at_3
849
+ value: 22.654
850
+ - type: map_at_5
851
+ value: 24.017
852
+ - type: mrr_at_1
853
+ value: 21.198
854
+ - type: mrr_at_10
855
+ value: 28.903000000000002
856
+ - type: mrr_at_100
857
+ value: 29.860999999999997
858
+ - type: mrr_at_1000
859
+ value: 29.934
860
+ - type: mrr_at_3
861
+ value: 26.634999999999998
862
+ - type: mrr_at_5
863
+ value: 27.903
864
+ - type: ndcg_at_1
865
+ value: 21.198
866
+ - type: ndcg_at_10
867
+ value: 29.982999999999997
868
+ - type: ndcg_at_100
869
+ value: 35.275
870
+ - type: ndcg_at_1000
871
+ value: 38.074000000000005
872
+ - type: ndcg_at_3
873
+ value: 25.502999999999997
874
+ - type: ndcg_at_5
875
+ value: 27.557
876
+ - type: precision_at_1
877
+ value: 21.198
878
+ - type: precision_at_10
879
+ value: 5.502
880
+ - type: precision_at_100
881
+ value: 0.942
882
+ - type: precision_at_1000
883
+ value: 0.136
884
+ - type: precision_at_3
885
+ value: 12.044
886
+ - type: precision_at_5
887
+ value: 8.782
888
+ - type: recall_at_1
889
+ value: 17.488999999999997
890
+ - type: recall_at_10
891
+ value: 40.821000000000005
892
+ - type: recall_at_100
893
+ value: 64.567
894
+ - type: recall_at_1000
895
+ value: 84.452
896
+ - type: recall_at_3
897
+ value: 28.351
898
+ - type: recall_at_5
899
+ value: 33.645
900
+ - task:
901
+ type: Retrieval
902
+ dataset:
903
+ type: BeIR/cqadupstack
904
+ name: MTEB CQADupstackUnixRetrieval
905
+ config: default
906
+ split: test
907
+ revision: None
908
+ metrics:
909
+ - type: map_at_1
910
+ value: 27.066000000000003
911
+ - type: map_at_10
912
+ value: 36.134
913
+ - type: map_at_100
914
+ value: 37.285000000000004
915
+ - type: map_at_1000
916
+ value: 37.389
917
+ - type: map_at_3
918
+ value: 33.522999999999996
919
+ - type: map_at_5
920
+ value: 34.905
921
+ - type: mrr_at_1
922
+ value: 31.436999999999998
923
+ - type: mrr_at_10
924
+ value: 40.225
925
+ - type: mrr_at_100
926
+ value: 41.079
927
+ - type: mrr_at_1000
928
+ value: 41.138000000000005
929
+ - type: mrr_at_3
930
+ value: 38.074999999999996
931
+ - type: mrr_at_5
932
+ value: 39.190000000000005
933
+ - type: ndcg_at_1
934
+ value: 31.436999999999998
935
+ - type: ndcg_at_10
936
+ value: 41.494
937
+ - type: ndcg_at_100
938
+ value: 46.678999999999995
939
+ - type: ndcg_at_1000
940
+ value: 48.964
941
+ - type: ndcg_at_3
942
+ value: 36.828
943
+ - type: ndcg_at_5
944
+ value: 38.789
945
+ - type: precision_at_1
946
+ value: 31.436999999999998
947
+ - type: precision_at_10
948
+ value: 6.931
949
+ - type: precision_at_100
950
+ value: 1.072
951
+ - type: precision_at_1000
952
+ value: 0.13799999999999998
953
+ - type: precision_at_3
954
+ value: 16.729
955
+ - type: precision_at_5
956
+ value: 11.567
957
+ - type: recall_at_1
958
+ value: 27.066000000000003
959
+ - type: recall_at_10
960
+ value: 53.705000000000005
961
+ - type: recall_at_100
962
+ value: 75.968
963
+ - type: recall_at_1000
964
+ value: 91.937
965
+ - type: recall_at_3
966
+ value: 40.865
967
+ - type: recall_at_5
968
+ value: 45.739999999999995
969
+ - task:
970
+ type: Retrieval
971
+ dataset:
972
+ type: BeIR/cqadupstack
973
+ name: MTEB CQADupstackWebmastersRetrieval
974
+ config: default
975
+ split: test
976
+ revision: None
977
+ metrics:
978
+ - type: map_at_1
979
+ value: 24.979000000000003
980
+ - type: map_at_10
981
+ value: 32.799
982
+ - type: map_at_100
983
+ value: 34.508
984
+ - type: map_at_1000
985
+ value: 34.719
986
+ - type: map_at_3
987
+ value: 29.947000000000003
988
+ - type: map_at_5
989
+ value: 31.584
990
+ - type: mrr_at_1
991
+ value: 30.237000000000002
992
+ - type: mrr_at_10
993
+ value: 37.651
994
+ - type: mrr_at_100
995
+ value: 38.805
996
+ - type: mrr_at_1000
997
+ value: 38.851
998
+ - type: mrr_at_3
999
+ value: 35.046
1000
+ - type: mrr_at_5
1001
+ value: 36.548
1002
+ - type: ndcg_at_1
1003
+ value: 30.237000000000002
1004
+ - type: ndcg_at_10
1005
+ value: 38.356
1006
+ - type: ndcg_at_100
1007
+ value: 44.906
1008
+ - type: ndcg_at_1000
1009
+ value: 47.299
1010
+ - type: ndcg_at_3
1011
+ value: 33.717999999999996
1012
+ - type: ndcg_at_5
1013
+ value: 35.946
1014
+ - type: precision_at_1
1015
+ value: 30.237000000000002
1016
+ - type: precision_at_10
1017
+ value: 7.292
1018
+ - type: precision_at_100
1019
+ value: 1.496
1020
+ - type: precision_at_1000
1021
+ value: 0.23600000000000002
1022
+ - type: precision_at_3
1023
+ value: 15.547
1024
+ - type: precision_at_5
1025
+ value: 11.344
1026
+ - type: recall_at_1
1027
+ value: 24.979000000000003
1028
+ - type: recall_at_10
1029
+ value: 48.624
1030
+ - type: recall_at_100
1031
+ value: 77.932
1032
+ - type: recall_at_1000
1033
+ value: 92.66499999999999
1034
+ - type: recall_at_3
1035
+ value: 35.217
1036
+ - type: recall_at_5
1037
+ value: 41.394
1038
+ - task:
1039
+ type: Retrieval
1040
+ dataset:
1041
+ type: BeIR/cqadupstack
1042
+ name: MTEB CQADupstackWordpressRetrieval
1043
+ config: default
1044
+ split: test
1045
+ revision: None
1046
+ metrics:
1047
+ - type: map_at_1
1048
+ value: 22.566
1049
+ - type: map_at_10
1050
+ value: 30.945
1051
+ - type: map_at_100
1052
+ value: 31.759999999999998
1053
+ - type: map_at_1000
1054
+ value: 31.855
1055
+ - type: map_at_3
1056
+ value: 28.64
1057
+ - type: map_at_5
1058
+ value: 29.787000000000003
1059
+ - type: mrr_at_1
1060
+ value: 24.954
1061
+ - type: mrr_at_10
1062
+ value: 33.311
1063
+ - type: mrr_at_100
1064
+ value: 34.050000000000004
1065
+ - type: mrr_at_1000
1066
+ value: 34.117999999999995
1067
+ - type: mrr_at_3
1068
+ value: 31.238
1069
+ - type: mrr_at_5
1070
+ value: 32.329
1071
+ - type: ndcg_at_1
1072
+ value: 24.954
1073
+ - type: ndcg_at_10
1074
+ value: 35.676
1075
+ - type: ndcg_at_100
1076
+ value: 39.931
1077
+ - type: ndcg_at_1000
1078
+ value: 42.43
1079
+ - type: ndcg_at_3
1080
+ value: 31.365
1081
+ - type: ndcg_at_5
1082
+ value: 33.184999999999995
1083
+ - type: precision_at_1
1084
+ value: 24.954
1085
+ - type: precision_at_10
1086
+ value: 5.564
1087
+ - type: precision_at_100
1088
+ value: 0.826
1089
+ - type: precision_at_1000
1090
+ value: 0.116
1091
+ - type: precision_at_3
1092
+ value: 13.555
1093
+ - type: precision_at_5
1094
+ value: 9.168
1095
+ - type: recall_at_1
1096
+ value: 22.566
1097
+ - type: recall_at_10
1098
+ value: 47.922
1099
+ - type: recall_at_100
1100
+ value: 67.931
1101
+ - type: recall_at_1000
1102
+ value: 86.653
1103
+ - type: recall_at_3
1104
+ value: 36.103
1105
+ - type: recall_at_5
1106
+ value: 40.699000000000005
1107
+ - task:
1108
+ type: Retrieval
1109
+ dataset:
1110
+ type: climate-fever
1111
+ name: MTEB ClimateFEVER
1112
+ config: default
1113
+ split: test
1114
+ revision: None
1115
+ metrics:
1116
+ - type: map_at_1
1117
+ value: 16.950000000000003
1118
+ - type: map_at_10
1119
+ value: 28.612
1120
+ - type: map_at_100
1121
+ value: 30.476999999999997
1122
+ - type: map_at_1000
1123
+ value: 30.674
1124
+ - type: map_at_3
1125
+ value: 24.262
1126
+ - type: map_at_5
1127
+ value: 26.554
1128
+ - type: mrr_at_1
1129
+ value: 38.241
1130
+ - type: mrr_at_10
1131
+ value: 50.43
1132
+ - type: mrr_at_100
1133
+ value: 51.059
1134
+ - type: mrr_at_1000
1135
+ value: 51.090999999999994
1136
+ - type: mrr_at_3
1137
+ value: 47.514
1138
+ - type: mrr_at_5
1139
+ value: 49.246
1140
+ - type: ndcg_at_1
1141
+ value: 38.241
1142
+ - type: ndcg_at_10
1143
+ value: 38.218
1144
+ - type: ndcg_at_100
1145
+ value: 45.003
1146
+ - type: ndcg_at_1000
1147
+ value: 48.269
1148
+ - type: ndcg_at_3
1149
+ value: 32.568000000000005
1150
+ - type: ndcg_at_5
1151
+ value: 34.400999999999996
1152
+ - type: precision_at_1
1153
+ value: 38.241
1154
+ - type: precision_at_10
1155
+ value: 11.674
1156
+ - type: precision_at_100
1157
+ value: 1.913
1158
+ - type: precision_at_1000
1159
+ value: 0.252
1160
+ - type: precision_at_3
1161
+ value: 24.387
1162
+ - type: precision_at_5
1163
+ value: 18.163
1164
+ - type: recall_at_1
1165
+ value: 16.950000000000003
1166
+ - type: recall_at_10
1167
+ value: 43.769000000000005
1168
+ - type: recall_at_100
1169
+ value: 66.875
1170
+ - type: recall_at_1000
1171
+ value: 84.92699999999999
1172
+ - type: recall_at_3
1173
+ value: 29.353
1174
+ - type: recall_at_5
1175
+ value: 35.467
1176
+ - task:
1177
+ type: Retrieval
1178
+ dataset:
1179
+ type: dbpedia-entity
1180
+ name: MTEB DBPedia
1181
+ config: default
1182
+ split: test
1183
+ revision: None
1184
+ metrics:
1185
+ - type: map_at_1
1186
+ value: 9.276
1187
+ - type: map_at_10
1188
+ value: 20.848
1189
+ - type: map_at_100
1190
+ value: 29.804000000000002
1191
+ - type: map_at_1000
1192
+ value: 31.398
1193
+ - type: map_at_3
1194
+ value: 14.886
1195
+ - type: map_at_5
1196
+ value: 17.516000000000002
1197
+ - type: mrr_at_1
1198
+ value: 71.0
1199
+ - type: mrr_at_10
1200
+ value: 78.724
1201
+ - type: mrr_at_100
1202
+ value: 78.976
1203
+ - type: mrr_at_1000
1204
+ value: 78.986
1205
+ - type: mrr_at_3
1206
+ value: 77.333
1207
+ - type: mrr_at_5
1208
+ value: 78.021
1209
+ - type: ndcg_at_1
1210
+ value: 57.875
1211
+ - type: ndcg_at_10
1212
+ value: 43.855
1213
+ - type: ndcg_at_100
1214
+ value: 48.99
1215
+ - type: ndcg_at_1000
1216
+ value: 56.141
1217
+ - type: ndcg_at_3
1218
+ value: 48.914
1219
+ - type: ndcg_at_5
1220
+ value: 45.961
1221
+ - type: precision_at_1
1222
+ value: 71.0
1223
+ - type: precision_at_10
1224
+ value: 34.575
1225
+ - type: precision_at_100
1226
+ value: 11.182
1227
+ - type: precision_at_1000
1228
+ value: 2.044
1229
+ - type: precision_at_3
1230
+ value: 52.5
1231
+ - type: precision_at_5
1232
+ value: 44.2
1233
+ - type: recall_at_1
1234
+ value: 9.276
1235
+ - type: recall_at_10
1236
+ value: 26.501
1237
+ - type: recall_at_100
1238
+ value: 55.72899999999999
1239
+ - type: recall_at_1000
1240
+ value: 78.532
1241
+ - type: recall_at_3
1242
+ value: 16.365
1243
+ - type: recall_at_5
1244
+ value: 20.154
1245
+ - task:
1246
+ type: Classification
1247
+ dataset:
1248
+ type: mteb/emotion
1249
+ name: MTEB EmotionClassification
1250
+ config: default
1251
+ split: test
1252
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1253
+ metrics:
1254
+ - type: accuracy
1255
+ value: 53.400000000000006
1256
+ - type: f1
1257
+ value: 48.55192863364752
1258
+ - task:
1259
+ type: Retrieval
1260
+ dataset:
1261
+ type: fever
1262
+ name: MTEB FEVER
1263
+ config: default
1264
+ split: test
1265
+ revision: None
1266
+ metrics:
1267
+ - type: map_at_1
1268
+ value: 73.405
1269
+ - type: map_at_10
1270
+ value: 82.822
1271
+ - type: map_at_100
1272
+ value: 83.042
1273
+ - type: map_at_1000
1274
+ value: 83.055
1275
+ - type: map_at_3
1276
+ value: 81.65299999999999
1277
+ - type: map_at_5
1278
+ value: 82.431
1279
+ - type: mrr_at_1
1280
+ value: 79.178
1281
+ - type: mrr_at_10
1282
+ value: 87.02
1283
+ - type: mrr_at_100
1284
+ value: 87.095
1285
+ - type: mrr_at_1000
1286
+ value: 87.09700000000001
1287
+ - type: mrr_at_3
1288
+ value: 86.309
1289
+ - type: mrr_at_5
1290
+ value: 86.824
1291
+ - type: ndcg_at_1
1292
+ value: 79.178
1293
+ - type: ndcg_at_10
1294
+ value: 86.72
1295
+ - type: ndcg_at_100
1296
+ value: 87.457
1297
+ - type: ndcg_at_1000
1298
+ value: 87.691
1299
+ - type: ndcg_at_3
1300
+ value: 84.974
1301
+ - type: ndcg_at_5
1302
+ value: 86.032
1303
+ - type: precision_at_1
1304
+ value: 79.178
1305
+ - type: precision_at_10
1306
+ value: 10.548
1307
+ - type: precision_at_100
1308
+ value: 1.113
1309
+ - type: precision_at_1000
1310
+ value: 0.11499999999999999
1311
+ - type: precision_at_3
1312
+ value: 32.848
1313
+ - type: precision_at_5
1314
+ value: 20.45
1315
+ - type: recall_at_1
1316
+ value: 73.405
1317
+ - type: recall_at_10
1318
+ value: 94.39699999999999
1319
+ - type: recall_at_100
1320
+ value: 97.219
1321
+ - type: recall_at_1000
1322
+ value: 98.675
1323
+ - type: recall_at_3
1324
+ value: 89.679
1325
+ - type: recall_at_5
1326
+ value: 92.392
1327
+ - task:
1328
+ type: Retrieval
1329
+ dataset:
1330
+ type: fiqa
1331
+ name: MTEB FiQA2018
1332
+ config: default
1333
+ split: test
1334
+ revision: None
1335
+ metrics:
1336
+ - type: map_at_1
1337
+ value: 22.651
1338
+ - type: map_at_10
1339
+ value: 36.886
1340
+ - type: map_at_100
1341
+ value: 38.811
1342
+ - type: map_at_1000
1343
+ value: 38.981
1344
+ - type: map_at_3
1345
+ value: 32.538
1346
+ - type: map_at_5
1347
+ value: 34.763
1348
+ - type: mrr_at_1
1349
+ value: 44.444
1350
+ - type: mrr_at_10
1351
+ value: 53.168000000000006
1352
+ - type: mrr_at_100
1353
+ value: 53.839000000000006
1354
+ - type: mrr_at_1000
1355
+ value: 53.869
1356
+ - type: mrr_at_3
1357
+ value: 50.54
1358
+ - type: mrr_at_5
1359
+ value: 52.068000000000005
1360
+ - type: ndcg_at_1
1361
+ value: 44.444
1362
+ - type: ndcg_at_10
1363
+ value: 44.994
1364
+ - type: ndcg_at_100
1365
+ value: 51.599
1366
+ - type: ndcg_at_1000
1367
+ value: 54.339999999999996
1368
+ - type: ndcg_at_3
1369
+ value: 41.372
1370
+ - type: ndcg_at_5
1371
+ value: 42.149
1372
+ - type: precision_at_1
1373
+ value: 44.444
1374
+ - type: precision_at_10
1375
+ value: 12.407
1376
+ - type: precision_at_100
1377
+ value: 1.9269999999999998
1378
+ - type: precision_at_1000
1379
+ value: 0.242
1380
+ - type: precision_at_3
1381
+ value: 27.726
1382
+ - type: precision_at_5
1383
+ value: 19.814999999999998
1384
+ - type: recall_at_1
1385
+ value: 22.651
1386
+ - type: recall_at_10
1387
+ value: 52.075
1388
+ - type: recall_at_100
1389
+ value: 76.51400000000001
1390
+ - type: recall_at_1000
1391
+ value: 92.852
1392
+ - type: recall_at_3
1393
+ value: 37.236000000000004
1394
+ - type: recall_at_5
1395
+ value: 43.175999999999995
1396
+ - task:
1397
+ type: Retrieval
1398
+ dataset:
1399
+ type: hotpotqa
1400
+ name: MTEB HotpotQA
1401
+ config: default
1402
+ split: test
1403
+ revision: None
1404
+ metrics:
1405
+ - type: map_at_1
1406
+ value: 40.777
1407
+ - type: map_at_10
1408
+ value: 66.79899999999999
1409
+ - type: map_at_100
1410
+ value: 67.65299999999999
1411
+ - type: map_at_1000
1412
+ value: 67.706
1413
+ - type: map_at_3
1414
+ value: 63.352
1415
+ - type: map_at_5
1416
+ value: 65.52900000000001
1417
+ - type: mrr_at_1
1418
+ value: 81.553
1419
+ - type: mrr_at_10
1420
+ value: 86.983
1421
+ - type: mrr_at_100
1422
+ value: 87.132
1423
+ - type: mrr_at_1000
1424
+ value: 87.136
1425
+ - type: mrr_at_3
1426
+ value: 86.156
1427
+ - type: mrr_at_5
1428
+ value: 86.726
1429
+ - type: ndcg_at_1
1430
+ value: 81.553
1431
+ - type: ndcg_at_10
1432
+ value: 74.64
1433
+ - type: ndcg_at_100
1434
+ value: 77.459
1435
+ - type: ndcg_at_1000
1436
+ value: 78.43
1437
+ - type: ndcg_at_3
1438
+ value: 69.878
1439
+ - type: ndcg_at_5
1440
+ value: 72.59400000000001
1441
+ - type: precision_at_1
1442
+ value: 81.553
1443
+ - type: precision_at_10
1444
+ value: 15.654000000000002
1445
+ - type: precision_at_100
1446
+ value: 1.783
1447
+ - type: precision_at_1000
1448
+ value: 0.191
1449
+ - type: precision_at_3
1450
+ value: 45.199
1451
+ - type: precision_at_5
1452
+ value: 29.267
1453
+ - type: recall_at_1
1454
+ value: 40.777
1455
+ - type: recall_at_10
1456
+ value: 78.271
1457
+ - type: recall_at_100
1458
+ value: 89.129
1459
+ - type: recall_at_1000
1460
+ value: 95.49
1461
+ - type: recall_at_3
1462
+ value: 67.79899999999999
1463
+ - type: recall_at_5
1464
+ value: 73.167
1465
+ - task:
1466
+ type: Classification
1467
+ dataset:
1468
+ type: mteb/imdb
1469
+ name: MTEB ImdbClassification
1470
+ config: default
1471
+ split: test
1472
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1473
+ metrics:
1474
+ - type: accuracy
1475
+ value: 93.724
1476
+ - type: ap
1477
+ value: 90.62951630330716
1478
+ - type: f1
1479
+ value: 93.7196637416671
1480
+ - task:
1481
+ type: Retrieval
1482
+ dataset:
1483
+ type: msmarco
1484
+ name: MTEB MSMARCO
1485
+ config: default
1486
+ split: dev
1487
+ revision: None
1488
+ metrics:
1489
+ - type: map_at_1
1490
+ value: 23.301
1491
+ - type: map_at_10
1492
+ value: 35.657
1493
+ - type: map_at_100
1494
+ value: 36.797000000000004
1495
+ - type: map_at_1000
1496
+ value: 36.844
1497
+ - type: map_at_3
1498
+ value: 31.743
1499
+ - type: map_at_5
1500
+ value: 34.003
1501
+ - type: mrr_at_1
1502
+ value: 23.854
1503
+ - type: mrr_at_10
1504
+ value: 36.242999999999995
1505
+ - type: mrr_at_100
1506
+ value: 37.32
1507
+ - type: mrr_at_1000
1508
+ value: 37.361
1509
+ - type: mrr_at_3
1510
+ value: 32.4
1511
+ - type: mrr_at_5
1512
+ value: 34.634
1513
+ - type: ndcg_at_1
1514
+ value: 23.868000000000002
1515
+ - type: ndcg_at_10
1516
+ value: 42.589
1517
+ - type: ndcg_at_100
1518
+ value: 48.031
1519
+ - type: ndcg_at_1000
1520
+ value: 49.189
1521
+ - type: ndcg_at_3
1522
+ value: 34.649
1523
+ - type: ndcg_at_5
1524
+ value: 38.676
1525
+ - type: precision_at_1
1526
+ value: 23.868000000000002
1527
+ - type: precision_at_10
1528
+ value: 6.6850000000000005
1529
+ - type: precision_at_100
1530
+ value: 0.9400000000000001
1531
+ - type: precision_at_1000
1532
+ value: 0.104
1533
+ - type: precision_at_3
1534
+ value: 14.651
1535
+ - type: precision_at_5
1536
+ value: 10.834000000000001
1537
+ - type: recall_at_1
1538
+ value: 23.301
1539
+ - type: recall_at_10
1540
+ value: 63.88700000000001
1541
+ - type: recall_at_100
1542
+ value: 88.947
1543
+ - type: recall_at_1000
1544
+ value: 97.783
1545
+ - type: recall_at_3
1546
+ value: 42.393
1547
+ - type: recall_at_5
1548
+ value: 52.036
1549
+ - task:
1550
+ type: Classification
1551
+ dataset:
1552
+ type: mteb/mtop_domain
1553
+ name: MTEB MTOPDomainClassification (en)
1554
+ config: en
1555
+ split: test
1556
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1557
+ metrics:
1558
+ - type: accuracy
1559
+ value: 94.67624259005929
1560
+ - type: f1
1561
+ value: 94.43953546498719
1562
+ - task:
1563
+ type: Classification
1564
+ dataset:
1565
+ type: mteb/mtop_intent
1566
+ name: MTEB MTOPIntentClassification (en)
1567
+ config: en
1568
+ split: test
1569
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1570
+ metrics:
1571
+ - type: accuracy
1572
+ value: 79.89512083903328
1573
+ - type: f1
1574
+ value: 61.64282062596609
1575
+ - task:
1576
+ type: Classification
1577
+ dataset:
1578
+ type: mteb/amazon_massive_intent
1579
+ name: MTEB MassiveIntentClassification (en)
1580
+ config: en
1581
+ split: test
1582
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1583
+ metrics:
1584
+ - type: accuracy
1585
+ value: 79.58305312710155
1586
+ - type: f1
1587
+ value: 77.32463609252174
1588
+ - task:
1589
+ type: Classification
1590
+ dataset:
1591
+ type: mteb/amazon_massive_scenario
1592
+ name: MTEB MassiveScenarioClassification (en)
1593
+ config: en
1594
+ split: test
1595
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1596
+ metrics:
1597
+ - type: accuracy
1598
+ value: 81.8897108271688
1599
+ - type: f1
1600
+ value: 81.67334926430276
1601
+ - task:
1602
+ type: Clustering
1603
+ dataset:
1604
+ type: mteb/medrxiv-clustering-p2p
1605
+ name: MTEB MedrxivClusteringP2P
1606
+ config: default
1607
+ split: test
1608
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1609
+ metrics:
1610
+ - type: v_measure
1611
+ value: 36.31529875009507
1612
+ - task:
1613
+ type: Clustering
1614
+ dataset:
1615
+ type: mteb/medrxiv-clustering-s2s
1616
+ name: MTEB MedrxivClusteringS2S
1617
+ config: default
1618
+ split: test
1619
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1620
+ metrics:
1621
+ - type: v_measure
1622
+ value: 31.734233714415073
1623
+ - task:
1624
+ type: Reranking
1625
+ dataset:
1626
+ type: mteb/mind_small
1627
+ name: MTEB MindSmallReranking
1628
+ config: default
1629
+ split: test
1630
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1631
+ metrics:
1632
+ - type: map
1633
+ value: 30.994501713009452
1634
+ - type: mrr
1635
+ value: 32.13512850703073
1636
+ - task:
1637
+ type: Retrieval
1638
+ dataset:
1639
+ type: nfcorpus
1640
+ name: MTEB NFCorpus
1641
+ config: default
1642
+ split: test
1643
+ revision: None
1644
+ metrics:
1645
+ - type: map_at_1
1646
+ value: 6.603000000000001
1647
+ - type: map_at_10
1648
+ value: 13.767999999999999
1649
+ - type: map_at_100
1650
+ value: 17.197000000000003
1651
+ - type: map_at_1000
1652
+ value: 18.615000000000002
1653
+ - type: map_at_3
1654
+ value: 10.567
1655
+ - type: map_at_5
1656
+ value: 12.078999999999999
1657
+ - type: mrr_at_1
1658
+ value: 44.891999999999996
1659
+ - type: mrr_at_10
1660
+ value: 53.75299999999999
1661
+ - type: mrr_at_100
1662
+ value: 54.35
1663
+ - type: mrr_at_1000
1664
+ value: 54.388000000000005
1665
+ - type: mrr_at_3
1666
+ value: 51.495999999999995
1667
+ - type: mrr_at_5
1668
+ value: 52.688
1669
+ - type: ndcg_at_1
1670
+ value: 43.189
1671
+ - type: ndcg_at_10
1672
+ value: 34.567
1673
+ - type: ndcg_at_100
1674
+ value: 32.273
1675
+ - type: ndcg_at_1000
1676
+ value: 41.321999999999996
1677
+ - type: ndcg_at_3
1678
+ value: 40.171
1679
+ - type: ndcg_at_5
1680
+ value: 37.502
1681
+ - type: precision_at_1
1682
+ value: 44.582
1683
+ - type: precision_at_10
1684
+ value: 25.139
1685
+ - type: precision_at_100
1686
+ value: 7.739999999999999
1687
+ - type: precision_at_1000
1688
+ value: 2.054
1689
+ - type: precision_at_3
1690
+ value: 37.152
1691
+ - type: precision_at_5
1692
+ value: 31.826999999999998
1693
+ - type: recall_at_1
1694
+ value: 6.603000000000001
1695
+ - type: recall_at_10
1696
+ value: 17.023
1697
+ - type: recall_at_100
1698
+ value: 32.914
1699
+ - type: recall_at_1000
1700
+ value: 64.44800000000001
1701
+ - type: recall_at_3
1702
+ value: 11.457
1703
+ - type: recall_at_5
1704
+ value: 13.816
1705
+ - task:
1706
+ type: Retrieval
1707
+ dataset:
1708
+ type: nq
1709
+ name: MTEB NQ
1710
+ config: default
1711
+ split: test
1712
+ revision: None
1713
+ metrics:
1714
+ - type: map_at_1
1715
+ value: 30.026000000000003
1716
+ - type: map_at_10
1717
+ value: 45.429
1718
+ - type: map_at_100
1719
+ value: 46.45
1720
+ - type: map_at_1000
1721
+ value: 46.478
1722
+ - type: map_at_3
1723
+ value: 41.147
1724
+ - type: map_at_5
1725
+ value: 43.627
1726
+ - type: mrr_at_1
1727
+ value: 33.951
1728
+ - type: mrr_at_10
1729
+ value: 47.953
1730
+ - type: mrr_at_100
1731
+ value: 48.731
1732
+ - type: mrr_at_1000
1733
+ value: 48.751
1734
+ - type: mrr_at_3
1735
+ value: 44.39
1736
+ - type: mrr_at_5
1737
+ value: 46.533
1738
+ - type: ndcg_at_1
1739
+ value: 33.951
1740
+ - type: ndcg_at_10
1741
+ value: 53.24100000000001
1742
+ - type: ndcg_at_100
1743
+ value: 57.599999999999994
1744
+ - type: ndcg_at_1000
1745
+ value: 58.270999999999994
1746
+ - type: ndcg_at_3
1747
+ value: 45.190999999999995
1748
+ - type: ndcg_at_5
1749
+ value: 49.339
1750
+ - type: precision_at_1
1751
+ value: 33.951
1752
+ - type: precision_at_10
1753
+ value: 8.856
1754
+ - type: precision_at_100
1755
+ value: 1.133
1756
+ - type: precision_at_1000
1757
+ value: 0.12
1758
+ - type: precision_at_3
1759
+ value: 20.713
1760
+ - type: precision_at_5
1761
+ value: 14.838000000000001
1762
+ - type: recall_at_1
1763
+ value: 30.026000000000003
1764
+ - type: recall_at_10
1765
+ value: 74.512
1766
+ - type: recall_at_100
1767
+ value: 93.395
1768
+ - type: recall_at_1000
1769
+ value: 98.402
1770
+ - type: recall_at_3
1771
+ value: 53.677
1772
+ - type: recall_at_5
1773
+ value: 63.198
1774
+ - task:
1775
+ type: Retrieval
1776
+ dataset:
1777
+ type: quora
1778
+ name: MTEB QuoraRetrieval
1779
+ config: default
1780
+ split: test
1781
+ revision: None
1782
+ metrics:
1783
+ - type: map_at_1
1784
+ value: 71.41300000000001
1785
+ - type: map_at_10
1786
+ value: 85.387
1787
+ - type: map_at_100
1788
+ value: 86.027
1789
+ - type: map_at_1000
1790
+ value: 86.041
1791
+ - type: map_at_3
1792
+ value: 82.543
1793
+ - type: map_at_5
1794
+ value: 84.304
1795
+ - type: mrr_at_1
1796
+ value: 82.35
1797
+ - type: mrr_at_10
1798
+ value: 88.248
1799
+ - type: mrr_at_100
1800
+ value: 88.348
1801
+ - type: mrr_at_1000
1802
+ value: 88.349
1803
+ - type: mrr_at_3
1804
+ value: 87.348
1805
+ - type: mrr_at_5
1806
+ value: 87.96300000000001
1807
+ - type: ndcg_at_1
1808
+ value: 82.37
1809
+ - type: ndcg_at_10
1810
+ value: 88.98
1811
+ - type: ndcg_at_100
1812
+ value: 90.16499999999999
1813
+ - type: ndcg_at_1000
1814
+ value: 90.239
1815
+ - type: ndcg_at_3
1816
+ value: 86.34100000000001
1817
+ - type: ndcg_at_5
1818
+ value: 87.761
1819
+ - type: precision_at_1
1820
+ value: 82.37
1821
+ - type: precision_at_10
1822
+ value: 13.471
1823
+ - type: precision_at_100
1824
+ value: 1.534
1825
+ - type: precision_at_1000
1826
+ value: 0.157
1827
+ - type: precision_at_3
1828
+ value: 37.827
1829
+ - type: precision_at_5
1830
+ value: 24.773999999999997
1831
+ - type: recall_at_1
1832
+ value: 71.41300000000001
1833
+ - type: recall_at_10
1834
+ value: 95.748
1835
+ - type: recall_at_100
1836
+ value: 99.69200000000001
1837
+ - type: recall_at_1000
1838
+ value: 99.98
1839
+ - type: recall_at_3
1840
+ value: 87.996
1841
+ - type: recall_at_5
1842
+ value: 92.142
1843
+ - task:
1844
+ type: Clustering
1845
+ dataset:
1846
+ type: mteb/reddit-clustering
1847
+ name: MTEB RedditClustering
1848
+ config: default
1849
+ split: test
1850
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1851
+ metrics:
1852
+ - type: v_measure
1853
+ value: 56.96878497780007
1854
+ - task:
1855
+ type: Clustering
1856
+ dataset:
1857
+ type: mteb/reddit-clustering-p2p
1858
+ name: MTEB RedditClusteringP2P
1859
+ config: default
1860
+ split: test
1861
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1862
+ metrics:
1863
+ - type: v_measure
1864
+ value: 65.31371347128074
1865
+ - task:
1866
+ type: Retrieval
1867
+ dataset:
1868
+ type: scidocs
1869
+ name: MTEB SCIDOCS
1870
+ config: default
1871
+ split: test
1872
+ revision: None
1873
+ metrics:
1874
+ - type: map_at_1
1875
+ value: 5.287
1876
+ - type: map_at_10
1877
+ value: 13.530000000000001
1878
+ - type: map_at_100
1879
+ value: 15.891
1880
+ - type: map_at_1000
1881
+ value: 16.245
1882
+ - type: map_at_3
1883
+ value: 9.612
1884
+ - type: map_at_5
1885
+ value: 11.672
1886
+ - type: mrr_at_1
1887
+ value: 26.0
1888
+ - type: mrr_at_10
1889
+ value: 37.335
1890
+ - type: mrr_at_100
1891
+ value: 38.443
1892
+ - type: mrr_at_1000
1893
+ value: 38.486
1894
+ - type: mrr_at_3
1895
+ value: 33.783
1896
+ - type: mrr_at_5
1897
+ value: 36.028
1898
+ - type: ndcg_at_1
1899
+ value: 26.0
1900
+ - type: ndcg_at_10
1901
+ value: 22.215
1902
+ - type: ndcg_at_100
1903
+ value: 31.101
1904
+ - type: ndcg_at_1000
1905
+ value: 36.809
1906
+ - type: ndcg_at_3
1907
+ value: 21.104
1908
+ - type: ndcg_at_5
1909
+ value: 18.759999999999998
1910
+ - type: precision_at_1
1911
+ value: 26.0
1912
+ - type: precision_at_10
1913
+ value: 11.43
1914
+ - type: precision_at_100
1915
+ value: 2.424
1916
+ - type: precision_at_1000
1917
+ value: 0.379
1918
+ - type: precision_at_3
1919
+ value: 19.7
1920
+ - type: precision_at_5
1921
+ value: 16.619999999999997
1922
+ - type: recall_at_1
1923
+ value: 5.287
1924
+ - type: recall_at_10
1925
+ value: 23.18
1926
+ - type: recall_at_100
1927
+ value: 49.208
1928
+ - type: recall_at_1000
1929
+ value: 76.85300000000001
1930
+ - type: recall_at_3
1931
+ value: 11.991999999999999
1932
+ - type: recall_at_5
1933
+ value: 16.85
1934
+ - task:
1935
+ type: STS
1936
+ dataset:
1937
+ type: mteb/sickr-sts
1938
+ name: MTEB SICK-R
1939
+ config: default
1940
+ split: test
1941
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1942
+ metrics:
1943
+ - type: cos_sim_pearson
1944
+ value: 83.87834913790886
1945
+ - type: cos_sim_spearman
1946
+ value: 81.04583513112122
1947
+ - type: euclidean_pearson
1948
+ value: 81.20484174558065
1949
+ - type: euclidean_spearman
1950
+ value: 80.76430832561769
1951
+ - type: manhattan_pearson
1952
+ value: 81.21416730978615
1953
+ - type: manhattan_spearman
1954
+ value: 80.7797637394211
1955
+ - task:
1956
+ type: STS
1957
+ dataset:
1958
+ type: mteb/sts12-sts
1959
+ name: MTEB STS12
1960
+ config: default
1961
+ split: test
1962
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1963
+ metrics:
1964
+ - type: cos_sim_pearson
1965
+ value: 86.56143998865157
1966
+ - type: cos_sim_spearman
1967
+ value: 79.75387012744471
1968
+ - type: euclidean_pearson
1969
+ value: 83.7877519997019
1970
+ - type: euclidean_spearman
1971
+ value: 79.90489748003296
1972
+ - type: manhattan_pearson
1973
+ value: 83.7540590666095
1974
+ - type: manhattan_spearman
1975
+ value: 79.86434577931573
1976
+ - task:
1977
+ type: STS
1978
+ dataset:
1979
+ type: mteb/sts13-sts
1980
+ name: MTEB STS13
1981
+ config: default
1982
+ split: test
1983
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1984
+ metrics:
1985
+ - type: cos_sim_pearson
1986
+ value: 83.92102564177941
1987
+ - type: cos_sim_spearman
1988
+ value: 84.98234585939103
1989
+ - type: euclidean_pearson
1990
+ value: 84.47729567593696
1991
+ - type: euclidean_spearman
1992
+ value: 85.09490696194469
1993
+ - type: manhattan_pearson
1994
+ value: 84.38622951588229
1995
+ - type: manhattan_spearman
1996
+ value: 85.02507171545574
1997
+ - task:
1998
+ type: STS
1999
+ dataset:
2000
+ type: mteb/sts14-sts
2001
+ name: MTEB STS14
2002
+ config: default
2003
+ split: test
2004
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2005
+ metrics:
2006
+ - type: cos_sim_pearson
2007
+ value: 80.1891164763377
2008
+ - type: cos_sim_spearman
2009
+ value: 80.7997969966883
2010
+ - type: euclidean_pearson
2011
+ value: 80.48572256162396
2012
+ - type: euclidean_spearman
2013
+ value: 80.57851903536378
2014
+ - type: manhattan_pearson
2015
+ value: 80.4324819433651
2016
+ - type: manhattan_spearman
2017
+ value: 80.5074526239062
2018
+ - task:
2019
+ type: STS
2020
+ dataset:
2021
+ type: mteb/sts15-sts
2022
+ name: MTEB STS15
2023
+ config: default
2024
+ split: test
2025
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2026
+ metrics:
2027
+ - type: cos_sim_pearson
2028
+ value: 82.64319975116025
2029
+ - type: cos_sim_spearman
2030
+ value: 84.88671197763652
2031
+ - type: euclidean_pearson
2032
+ value: 84.74692193293231
2033
+ - type: euclidean_spearman
2034
+ value: 85.27151722073653
2035
+ - type: manhattan_pearson
2036
+ value: 84.72460516785438
2037
+ - type: manhattan_spearman
2038
+ value: 85.26518899786687
2039
+ - task:
2040
+ type: STS
2041
+ dataset:
2042
+ type: mteb/sts16-sts
2043
+ name: MTEB STS16
2044
+ config: default
2045
+ split: test
2046
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2047
+ metrics:
2048
+ - type: cos_sim_pearson
2049
+ value: 83.24687565822381
2050
+ - type: cos_sim_spearman
2051
+ value: 85.60418454111263
2052
+ - type: euclidean_pearson
2053
+ value: 84.85829740169851
2054
+ - type: euclidean_spearman
2055
+ value: 85.66378014138306
2056
+ - type: manhattan_pearson
2057
+ value: 84.84672408808835
2058
+ - type: manhattan_spearman
2059
+ value: 85.63331924364891
2060
+ - task:
2061
+ type: STS
2062
+ dataset:
2063
+ type: mteb/sts17-crosslingual-sts
2064
+ name: MTEB STS17 (en-en)
2065
+ config: en-en
2066
+ split: test
2067
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2068
+ metrics:
2069
+ - type: cos_sim_pearson
2070
+ value: 84.87758895415485
2071
+ - type: cos_sim_spearman
2072
+ value: 85.8193745617297
2073
+ - type: euclidean_pearson
2074
+ value: 85.78719118848134
2075
+ - type: euclidean_spearman
2076
+ value: 84.35797575385688
2077
+ - type: manhattan_pearson
2078
+ value: 85.97919844815692
2079
+ - type: manhattan_spearman
2080
+ value: 84.58334745175151
2081
+ - task:
2082
+ type: STS
2083
+ dataset:
2084
+ type: mteb/sts22-crosslingual-sts
2085
+ name: MTEB STS22 (en)
2086
+ config: en
2087
+ split: test
2088
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2089
+ metrics:
2090
+ - type: cos_sim_pearson
2091
+ value: 67.27076035963599
2092
+ - type: cos_sim_spearman
2093
+ value: 67.21433656439973
2094
+ - type: euclidean_pearson
2095
+ value: 68.07434078679324
2096
+ - type: euclidean_spearman
2097
+ value: 66.0249731719049
2098
+ - type: manhattan_pearson
2099
+ value: 67.95495198947476
2100
+ - type: manhattan_spearman
2101
+ value: 65.99893908331886
2102
+ - task:
2103
+ type: STS
2104
+ dataset:
2105
+ type: mteb/stsbenchmark-sts
2106
+ name: MTEB STSBenchmark
2107
+ config: default
2108
+ split: test
2109
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2110
+ metrics:
2111
+ - type: cos_sim_pearson
2112
+ value: 82.22437747056817
2113
+ - type: cos_sim_spearman
2114
+ value: 85.0995685206174
2115
+ - type: euclidean_pearson
2116
+ value: 84.08616925603394
2117
+ - type: euclidean_spearman
2118
+ value: 84.89633925691658
2119
+ - type: manhattan_pearson
2120
+ value: 84.08332675923133
2121
+ - type: manhattan_spearman
2122
+ value: 84.8858228112915
2123
+ - task:
2124
+ type: Reranking
2125
+ dataset:
2126
+ type: mteb/scidocs-reranking
2127
+ name: MTEB SciDocsRR
2128
+ config: default
2129
+ split: test
2130
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2131
+ metrics:
2132
+ - type: map
2133
+ value: 87.6909022589666
2134
+ - type: mrr
2135
+ value: 96.43341952165481
2136
+ - task:
2137
+ type: Retrieval
2138
+ dataset:
2139
+ type: scifact
2140
+ name: MTEB SciFact
2141
+ config: default
2142
+ split: test
2143
+ revision: None
2144
+ metrics:
2145
+ - type: map_at_1
2146
+ value: 57.660999999999994
2147
+ - type: map_at_10
2148
+ value: 67.625
2149
+ - type: map_at_100
2150
+ value: 68.07600000000001
2151
+ - type: map_at_1000
2152
+ value: 68.10199999999999
2153
+ - type: map_at_3
2154
+ value: 64.50399999999999
2155
+ - type: map_at_5
2156
+ value: 66.281
2157
+ - type: mrr_at_1
2158
+ value: 61.0
2159
+ - type: mrr_at_10
2160
+ value: 68.953
2161
+ - type: mrr_at_100
2162
+ value: 69.327
2163
+ - type: mrr_at_1000
2164
+ value: 69.352
2165
+ - type: mrr_at_3
2166
+ value: 66.833
2167
+ - type: mrr_at_5
2168
+ value: 68.05
2169
+ - type: ndcg_at_1
2170
+ value: 61.0
2171
+ - type: ndcg_at_10
2172
+ value: 72.369
2173
+ - type: ndcg_at_100
2174
+ value: 74.237
2175
+ - type: ndcg_at_1000
2176
+ value: 74.939
2177
+ - type: ndcg_at_3
2178
+ value: 67.284
2179
+ - type: ndcg_at_5
2180
+ value: 69.72500000000001
2181
+ - type: precision_at_1
2182
+ value: 61.0
2183
+ - type: precision_at_10
2184
+ value: 9.733
2185
+ - type: precision_at_100
2186
+ value: 1.0670000000000002
2187
+ - type: precision_at_1000
2188
+ value: 0.11199999999999999
2189
+ - type: precision_at_3
2190
+ value: 26.222
2191
+ - type: precision_at_5
2192
+ value: 17.4
2193
+ - type: recall_at_1
2194
+ value: 57.660999999999994
2195
+ - type: recall_at_10
2196
+ value: 85.656
2197
+ - type: recall_at_100
2198
+ value: 93.833
2199
+ - type: recall_at_1000
2200
+ value: 99.333
2201
+ - type: recall_at_3
2202
+ value: 71.961
2203
+ - type: recall_at_5
2204
+ value: 78.094
2205
+ - task:
2206
+ type: PairClassification
2207
+ dataset:
2208
+ type: mteb/sprintduplicatequestions-pairclassification
2209
+ name: MTEB SprintDuplicateQuestions
2210
+ config: default
2211
+ split: test
2212
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2213
+ metrics:
2214
+ - type: cos_sim_accuracy
2215
+ value: 99.86930693069307
2216
+ - type: cos_sim_ap
2217
+ value: 96.76685487950894
2218
+ - type: cos_sim_f1
2219
+ value: 93.44587884806354
2220
+ - type: cos_sim_precision
2221
+ value: 92.80078895463511
2222
+ - type: cos_sim_recall
2223
+ value: 94.1
2224
+ - type: dot_accuracy
2225
+ value: 99.54356435643564
2226
+ - type: dot_ap
2227
+ value: 81.18659960405607
2228
+ - type: dot_f1
2229
+ value: 75.78008915304605
2230
+ - type: dot_precision
2231
+ value: 75.07360157016683
2232
+ - type: dot_recall
2233
+ value: 76.5
2234
+ - type: euclidean_accuracy
2235
+ value: 99.87326732673267
2236
+ - type: euclidean_ap
2237
+ value: 96.8102411908941
2238
+ - type: euclidean_f1
2239
+ value: 93.6127744510978
2240
+ - type: euclidean_precision
2241
+ value: 93.42629482071713
2242
+ - type: euclidean_recall
2243
+ value: 93.8
2244
+ - type: manhattan_accuracy
2245
+ value: 99.87425742574257
2246
+ - type: manhattan_ap
2247
+ value: 96.82857341435529
2248
+ - type: manhattan_f1
2249
+ value: 93.62129583124059
2250
+ - type: manhattan_precision
2251
+ value: 94.04641775983855
2252
+ - type: manhattan_recall
2253
+ value: 93.2
2254
+ - type: max_accuracy
2255
+ value: 99.87425742574257
2256
+ - type: max_ap
2257
+ value: 96.82857341435529
2258
+ - type: max_f1
2259
+ value: 93.62129583124059
2260
+ - task:
2261
+ type: Clustering
2262
+ dataset:
2263
+ type: mteb/stackexchange-clustering
2264
+ name: MTEB StackExchangeClustering
2265
+ config: default
2266
+ split: test
2267
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2268
+ metrics:
2269
+ - type: v_measure
2270
+ value: 65.92560972698926
2271
+ - task:
2272
+ type: Clustering
2273
+ dataset:
2274
+ type: mteb/stackexchange-clustering-p2p
2275
+ name: MTEB StackExchangeClusteringP2P
2276
+ config: default
2277
+ split: test
2278
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2279
+ metrics:
2280
+ - type: v_measure
2281
+ value: 34.92797240259008
2282
+ - task:
2283
+ type: Reranking
2284
+ dataset:
2285
+ type: mteb/stackoverflowdupquestions-reranking
2286
+ name: MTEB StackOverflowDupQuestions
2287
+ config: default
2288
+ split: test
2289
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2290
+ metrics:
2291
+ - type: map
2292
+ value: 55.244624045597654
2293
+ - type: mrr
2294
+ value: 56.185303666921314
2295
+ - task:
2296
+ type: Summarization
2297
+ dataset:
2298
+ type: mteb/summeval
2299
+ name: MTEB SummEval
2300
+ config: default
2301
+ split: test
2302
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2303
+ metrics:
2304
+ - type: cos_sim_pearson
2305
+ value: 31.02491987312937
2306
+ - type: cos_sim_spearman
2307
+ value: 32.055592206679734
2308
+ - type: dot_pearson
2309
+ value: 24.731627575422557
2310
+ - type: dot_spearman
2311
+ value: 24.308029077069733
2312
+ - task:
2313
+ type: Retrieval
2314
+ dataset:
2315
+ type: trec-covid
2316
+ name: MTEB TRECCOVID
2317
+ config: default
2318
+ split: test
2319
+ revision: None
2320
+ metrics:
2321
+ - type: map_at_1
2322
+ value: 0.231
2323
+ - type: map_at_10
2324
+ value: 1.899
2325
+ - type: map_at_100
2326
+ value: 9.498
2327
+ - type: map_at_1000
2328
+ value: 20.979999999999997
2329
+ - type: map_at_3
2330
+ value: 0.652
2331
+ - type: map_at_5
2332
+ value: 1.069
2333
+ - type: mrr_at_1
2334
+ value: 88.0
2335
+ - type: mrr_at_10
2336
+ value: 93.4
2337
+ - type: mrr_at_100
2338
+ value: 93.4
2339
+ - type: mrr_at_1000
2340
+ value: 93.4
2341
+ - type: mrr_at_3
2342
+ value: 93.0
2343
+ - type: mrr_at_5
2344
+ value: 93.4
2345
+ - type: ndcg_at_1
2346
+ value: 86.0
2347
+ - type: ndcg_at_10
2348
+ value: 75.375
2349
+ - type: ndcg_at_100
2350
+ value: 52.891999999999996
2351
+ - type: ndcg_at_1000
2352
+ value: 44.952999999999996
2353
+ - type: ndcg_at_3
2354
+ value: 81.05
2355
+ - type: ndcg_at_5
2356
+ value: 80.175
2357
+ - type: precision_at_1
2358
+ value: 88.0
2359
+ - type: precision_at_10
2360
+ value: 79.0
2361
+ - type: precision_at_100
2362
+ value: 53.16
2363
+ - type: precision_at_1000
2364
+ value: 19.408
2365
+ - type: precision_at_3
2366
+ value: 85.333
2367
+ - type: precision_at_5
2368
+ value: 84.0
2369
+ - type: recall_at_1
2370
+ value: 0.231
2371
+ - type: recall_at_10
2372
+ value: 2.078
2373
+ - type: recall_at_100
2374
+ value: 12.601
2375
+ - type: recall_at_1000
2376
+ value: 41.296
2377
+ - type: recall_at_3
2378
+ value: 0.6779999999999999
2379
+ - type: recall_at_5
2380
+ value: 1.1360000000000001
2381
+ - task:
2382
+ type: Retrieval
2383
+ dataset:
2384
+ type: webis-touche2020
2385
+ name: MTEB Touche2020
2386
+ config: default
2387
+ split: test
2388
+ revision: None
2389
+ metrics:
2390
+ - type: map_at_1
2391
+ value: 2.782
2392
+ - type: map_at_10
2393
+ value: 10.204
2394
+ - type: map_at_100
2395
+ value: 16.176
2396
+ - type: map_at_1000
2397
+ value: 17.456
2398
+ - type: map_at_3
2399
+ value: 5.354
2400
+ - type: map_at_5
2401
+ value: 7.503
2402
+ - type: mrr_at_1
2403
+ value: 40.816
2404
+ - type: mrr_at_10
2405
+ value: 54.010000000000005
2406
+ - type: mrr_at_100
2407
+ value: 54.49
2408
+ - type: mrr_at_1000
2409
+ value: 54.49
2410
+ - type: mrr_at_3
2411
+ value: 48.980000000000004
2412
+ - type: mrr_at_5
2413
+ value: 51.735
2414
+ - type: ndcg_at_1
2415
+ value: 36.735
2416
+ - type: ndcg_at_10
2417
+ value: 26.61
2418
+ - type: ndcg_at_100
2419
+ value: 36.967
2420
+ - type: ndcg_at_1000
2421
+ value: 47.274
2422
+ - type: ndcg_at_3
2423
+ value: 30.363
2424
+ - type: ndcg_at_5
2425
+ value: 29.448999999999998
2426
+ - type: precision_at_1
2427
+ value: 40.816
2428
+ - type: precision_at_10
2429
+ value: 23.878
2430
+ - type: precision_at_100
2431
+ value: 7.693999999999999
2432
+ - type: precision_at_1000
2433
+ value: 1.4489999999999998
2434
+ - type: precision_at_3
2435
+ value: 31.293
2436
+ - type: precision_at_5
2437
+ value: 29.796
2438
+ - type: recall_at_1
2439
+ value: 2.782
2440
+ - type: recall_at_10
2441
+ value: 16.485
2442
+ - type: recall_at_100
2443
+ value: 46.924
2444
+ - type: recall_at_1000
2445
+ value: 79.365
2446
+ - type: recall_at_3
2447
+ value: 6.52
2448
+ - type: recall_at_5
2449
+ value: 10.48
2450
+ - task:
2451
+ type: Classification
2452
+ dataset:
2453
+ type: mteb/toxic_conversations_50k
2454
+ name: MTEB ToxicConversationsClassification
2455
+ config: default
2456
+ split: test
2457
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2458
+ metrics:
2459
+ - type: accuracy
2460
+ value: 70.35220000000001
2461
+ - type: ap
2462
+ value: 14.121012926379601
2463
+ - type: f1
2464
+ value: 54.22118125394254
2465
+ - task:
2466
+ type: Classification
2467
+ dataset:
2468
+ type: mteb/tweet_sentiment_extraction
2469
+ name: MTEB TweetSentimentExtractionClassification
2470
+ config: default
2471
+ split: test
2472
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2473
+ metrics:
2474
+ - type: accuracy
2475
+ value: 59.90096208262592
2476
+ - type: f1
2477
+ value: 60.226896599794244
2478
+ - task:
2479
+ type: Clustering
2480
+ dataset:
2481
+ type: mteb/twentynewsgroups-clustering
2482
+ name: MTEB TwentyNewsgroupsClustering
2483
+ config: default
2484
+ split: test
2485
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2486
+ metrics:
2487
+ - type: v_measure
2488
+ value: 53.70780611078653
2489
+ - task:
2490
+ type: PairClassification
2491
+ dataset:
2492
+ type: mteb/twittersemeval2015-pairclassification
2493
+ name: MTEB TwitterSemEval2015
2494
+ config: default
2495
+ split: test
2496
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2497
+ metrics:
2498
+ - type: cos_sim_accuracy
2499
+ value: 87.10734934732073
2500
+ - type: cos_sim_ap
2501
+ value: 77.58349999516054
2502
+ - type: cos_sim_f1
2503
+ value: 70.25391395868965
2504
+ - type: cos_sim_precision
2505
+ value: 70.06035161374967
2506
+ - type: cos_sim_recall
2507
+ value: 70.44854881266491
2508
+ - type: dot_accuracy
2509
+ value: 80.60439887941826
2510
+ - type: dot_ap
2511
+ value: 54.52935200483575
2512
+ - type: dot_f1
2513
+ value: 54.170444242973716
2514
+ - type: dot_precision
2515
+ value: 47.47715534366309
2516
+ - type: dot_recall
2517
+ value: 63.06068601583114
2518
+ - type: euclidean_accuracy
2519
+ value: 87.26828396018358
2520
+ - type: euclidean_ap
2521
+ value: 78.00158454104036
2522
+ - type: euclidean_f1
2523
+ value: 70.70292457670601
2524
+ - type: euclidean_precision
2525
+ value: 68.79680479281079
2526
+ - type: euclidean_recall
2527
+ value: 72.71767810026385
2528
+ - type: manhattan_accuracy
2529
+ value: 87.11330988853788
2530
+ - type: manhattan_ap
2531
+ value: 77.92527099601855
2532
+ - type: manhattan_f1
2533
+ value: 70.76488706365502
2534
+ - type: manhattan_precision
2535
+ value: 68.89055472263868
2536
+ - type: manhattan_recall
2537
+ value: 72.74406332453826
2538
+ - type: max_accuracy
2539
+ value: 87.26828396018358
2540
+ - type: max_ap
2541
+ value: 78.00158454104036
2542
+ - type: max_f1
2543
+ value: 70.76488706365502
2544
+ - task:
2545
+ type: PairClassification
2546
+ dataset:
2547
+ type: mteb/twitterurlcorpus-pairclassification
2548
+ name: MTEB TwitterURLCorpus
2549
+ config: default
2550
+ split: test
2551
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2552
+ metrics:
2553
+ - type: cos_sim_accuracy
2554
+ value: 87.80804905499282
2555
+ - type: cos_sim_ap
2556
+ value: 83.06187782630936
2557
+ - type: cos_sim_f1
2558
+ value: 74.99716435403985
2559
+ - type: cos_sim_precision
2560
+ value: 73.67951860931579
2561
+ - type: cos_sim_recall
2562
+ value: 76.36279642747151
2563
+ - type: dot_accuracy
2564
+ value: 81.83141227151008
2565
+ - type: dot_ap
2566
+ value: 67.18241090841795
2567
+ - type: dot_f1
2568
+ value: 62.216037571751606
2569
+ - type: dot_precision
2570
+ value: 56.749381227391005
2571
+ - type: dot_recall
2572
+ value: 68.84816753926701
2573
+ - type: euclidean_accuracy
2574
+ value: 87.91671517832887
2575
+ - type: euclidean_ap
2576
+ value: 83.56538942001427
2577
+ - type: euclidean_f1
2578
+ value: 75.7327253337256
2579
+ - type: euclidean_precision
2580
+ value: 72.48856036606828
2581
+ - type: euclidean_recall
2582
+ value: 79.28087465352634
2583
+ - type: manhattan_accuracy
2584
+ value: 87.86626304963713
2585
+ - type: manhattan_ap
2586
+ value: 83.52939841172832
2587
+ - type: manhattan_f1
2588
+ value: 75.73635656329888
2589
+ - type: manhattan_precision
2590
+ value: 72.99150182103836
2591
+ - type: manhattan_recall
2592
+ value: 78.69571912534647
2593
+ - type: max_accuracy
2594
+ value: 87.91671517832887
2595
+ - type: max_ap
2596
+ value: 83.56538942001427
2597
+ - type: max_f1
2598
+ value: 75.73635656329888
2599
+ ---
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "",
3
  "architectures": [
4
  "BertModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "/share/models/ours/en/finetune/v5_newdata_7neg_prompt2_s512_clustering02_class",
3
  "architectures": [
4
  "BertModel"
5
  ],
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:21ba98e2e8a85709ef41b373c270083312b5cdb27d405fb178420178cfd66c4f
3
  size 1340698349
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ccd0ac7807e3ebe6a00c9bf11ac6cdd9a475bab954e8a86b90adcb4372c624d
3
  size 1340698349