Update README.md
Browse files
README.md
CHANGED
@@ -29,14 +29,24 @@ Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen
|
|
29 |
- 2/1/2024: **Thanks for the excellent tool from Vespa.** You can easily use multiple modes of BGE-M3 following this [notebook](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb)
|
30 |
|
31 |
|
32 |
-
##
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
| [BAAI/bge-
|
38 |
-
| [BAAI/bge-
|
39 |
-
| [BAAI/bge-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
|
42 |
|
@@ -232,19 +242,17 @@ Refer to our [report](https://github.com/FlagOpen/FlagEmbedding/blob/master/Flag
|
|
232 |
|
233 |
**The fine-tuning codes and datasets will be open-sourced in the near future.**
|
234 |
|
235 |
-
## Models
|
236 |
|
237 |
-
We release two versions:
|
238 |
-
- BAAI/bge-m3-unsupervised: the model after contrastive learning in a large-scale dataset
|
239 |
-
- BAAI/bge-m3: the final model fine-tuned from BAAI/bge-m3-unsupervised
|
240 |
|
241 |
## Acknowledgement
|
242 |
|
243 |
-
Thanks the authors of open-sourced datasets, including Miracl, MKQA, NarritiveQA, etc.
|
|
|
|
|
244 |
|
245 |
## Citation
|
246 |
|
247 |
-
If you find this repository useful, please consider giving a star :star: and citation
|
248 |
|
249 |
```
|
250 |
|
|
|
29 |
- 2/1/2024: **Thanks for the excellent tool from Vespa.** You can easily use multiple modes of BGE-M3 following this [notebook](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb)
|
30 |
|
31 |
|
32 |
+
## Specs
|
33 |
|
34 |
+
- Model
|
35 |
+
| Model Name | Dimension | Sequence Length | Introduction |
|
36 |
+
|:----:|:---:|:---:|:---:|
|
37 |
+
| [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | 1024 | 8192 | multilingual; unified fine-tuning (dense, sparse, and colbert) from bge-m3-unsupervised|
|
38 |
+
| [BAAI/bge-m3-unsupervised](https://huggingface.co/BAAI/bge-m3-unsupervised) | 1024 | 8192 | multilingual; contrastive learning from bge-m3-retromae |
|
39 |
+
| [BAAI/bge-m3-retromae](https://huggingface.co/BAAI/bge-m3-retromae) | -- | 8192 | multilingual; extend the max_length of [xlm-roberta](https://huggingface.co/FacebookAI/xlm-roberta-large) to 8192 and further pretrained via [retromae](https://github.com/staoxiao/RetroMAE)|
|
40 |
+
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | English model |
|
41 |
+
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | English model |
|
42 |
+
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | English model |
|
43 |
+
|
44 |
+
- Data
|
45 |
+
|
46 |
+
- Model
|
47 |
+
| Dataset | Introduction |
|
48 |
+
|:----:|:---:|
|
49 |
+
| [MLDR](https://huggingface.co/datasets/Shitao/MLDR) | Docuemtn Retrieval Dataset, covering 13 languages|
|
50 |
|
51 |
|
52 |
|
|
|
242 |
|
243 |
**The fine-tuning codes and datasets will be open-sourced in the near future.**
|
244 |
|
|
|
245 |
|
|
|
|
|
|
|
246 |
|
247 |
## Acknowledgement
|
248 |
|
249 |
+
Thanks to the authors of open-sourced datasets, including Miracl, MKQA, NarritiveQA, etc.
|
250 |
+
Thanks to the open-sourced libraries like [Tevatron](https://github.com/texttron/tevatron), [pyserini](https://github.com/castorini/pyserini).
|
251 |
+
|
252 |
|
253 |
## Citation
|
254 |
|
255 |
+
If you find this repository useful, please consider giving a star :star: and a citation
|
256 |
|
257 |
```
|
258 |
|