michaelfeil commited on
Commit
4386d50
1 Parent(s): 3777b8d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -383,25 +383,25 @@ pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropo
383
  # Tokenize sentences
384
  encoded_input = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt')
385
 
386
- scores_ort = model_ort(**inputs, return_dict=True).logits.view(-1, ).float()
387
  # Compute token embeddings
388
  with torch.inference_mode():
389
- scores = model_ort(**inputs, return_dict=True).logits.view(-1, ).float()
390
 
391
  # scores and scores_ort are identical
392
  ```
393
  #### Usage reranker with infinity
394
 
395
- Its also possible to deploy the onnx files with the [infinity_emb](https://github.com/michaelfeil/infinity) pip package.
396
  ```python
397
  import asyncio
398
  from infinity_emb import AsyncEmbeddingEngine, EngineArgs
399
 
400
- query='what is panda?'
401
  docs = ['The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear', "Paris is in France."]
402
 
403
  engine = AsyncEmbeddingEngine.from_args(
404
- EngineArgs(model_name_or_path = "BAAI/bge-reranker-base", device="cpu", engine="optimum" # or engine="torch"
405
  ))
406
 
407
  async def main():
 
383
  # Tokenize sentences
384
  encoded_input = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt')
385
 
386
+ scores_ort = model_ort(**encoded_input, return_dict=True).logits.view(-1, ).float()
387
  # Compute token embeddings
388
  with torch.inference_mode():
389
+ scores = model_ort(**encoded_input, return_dict=True).logits.view(-1, ).float()
390
 
391
  # scores and scores_ort are identical
392
  ```
393
  #### Usage reranker with infinity
394
 
395
+ Its also possible to deploy the onnx/torch files with the [infinity_emb](https://github.com/michaelfeil/infinity) pip package.
396
  ```python
397
  import asyncio
398
  from infinity_emb import AsyncEmbeddingEngine, EngineArgs
399
 
400
+ query='what is a panda?'
401
  docs = ['The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear', "Paris is in France."]
402
 
403
  engine = AsyncEmbeddingEngine.from_args(
404
+ EngineArgs(model_name_or_path = "BAAI/bge-reranker-base", device="cpu", engine="torch" # or engine="optimum" for onnx
405
  ))
406
 
407
  async def main():