Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -94,8 +94,8 @@ FlagEmbedding focuses on retrieval-augmented LLMs, consisting of the following p
|
|
94 |
- **Benchmark**: [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB)
|
95 |
|
96 |
## News
|
97 |
-
- 3/18/2024: Release new [rerankers](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker), built upon powerful M3 and LLM (GEMMA and MiniCPM, not so large actually
|
98 |
-
- 3/18/2024: Release [Visualized-BGE](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/visual), equipping BGE with visual capabilities. Visualized-BGE can be utilized to generate embeddings for hybrid image-text data.
|
99 |
- 1/30/2024: Release **BGE-M3**, a new member to BGE model series! M3 stands for **M**ulti-linguality (100+ languages), **M**ulti-granularities (input length up to 8192), **M**ulti-Functionality (unification of dense, lexical, multi-vec/colbert retrieval).
|
100 |
It is the first embedding model which supports all three retrieval methods, achieving new SOTA on multi-lingual (MIRACL) and cross-lingual (MKQA) benchmarks.
|
101 |
[Technical Report](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/BGE_M3.pdf) and [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3). :fire:
|
|
|
94 |
- **Benchmark**: [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB)
|
95 |
|
96 |
## News
|
97 |
+
- 3/18/2024: Release new [rerankers](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker), built upon powerful M3 and LLM (GEMMA and MiniCPM, not so large actually) backbones, supporitng multi-lingual processing and larger inputs, massive improvements of ranking performances on BEIR, C-MTEB/Retrieval, MIRACL, LlamaIndex Evaluation
|
98 |
+
- 3/18/2024: Release [Visualized-BGE](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/visual), equipping BGE with visual capabilities. Visualized-BGE can be utilized to generate embeddings for hybrid image-text data.
|
99 |
- 1/30/2024: Release **BGE-M3**, a new member to BGE model series! M3 stands for **M**ulti-linguality (100+ languages), **M**ulti-granularities (input length up to 8192), **M**ulti-Functionality (unification of dense, lexical, multi-vec/colbert retrieval).
|
100 |
It is the first embedding model which supports all three retrieval methods, achieving new SOTA on multi-lingual (MIRACL) and cross-lingual (MKQA) benchmarks.
|
101 |
[Technical Report](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/BGE_M3.pdf) and [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3). :fire:
|