File size: 35,497 Bytes
7918b37 92fd472 7918b37 92fd472 7918b37 92fd472 7918b37 92fd472 7918b37 92fd472 7918b37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 |
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from <path_to_diff_file.py>.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the diff. If any change should be done, please apply the change to the
# diff.py file directly.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
import math
from typing import List, Optional, Tuple, Union
import inspect
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
ModelOutput,
)
from .gemma_config import CostWiseGemmaConfig
from transformers.models.gemma2.modeling_gemma2 import Gemma2RMSNorm, Gemma2RotaryEmbedding, rotate_half, apply_rotary_pos_emb
from transformers.models.gemma2.modeling_gemma2 import Gemma2MLP, repeat_kv, Gemma2Attention, Gemma2FlashAttention2, Gemma2SdpaAttention, GEMMA2_ATTENTION_CLASSES, Gemma2DecoderLayer, GEMMA2_START_DOCSTRING
from transformers.models.gemma2.modeling_gemma2 import GEMMA2_INPUTS_DOCSTRING
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
logger = logging.get_logger(__name__)
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
@add_start_docstrings(
"The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
GEMMA2_START_DOCSTRING,
)
class CostWiseGemma2PreTrainedModel(PreTrainedModel):
config_class = CostWiseGemmaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Gemma2DecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = False
_supports_quantized_cache = False
_supports_static_cache = True
_is_stateful = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
GEMMA2_ATTENTION_CLASSES = {
"eager": Gemma2Attention,
"flash_attention_2": Gemma2FlashAttention2,
"sdpa": Gemma2SdpaAttention,
}
_CONFIG_FOR_DOC = "CostWiseGemmaConfig"
@dataclass
class CostWiseModelOutputWithPast(ModelOutput):
last_hidden_state: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
attention_masks: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class CostWiseCausalLMOutputWithPast(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
attention_masks: Optional[Tuple[torch.FloatTensor]] = None
def token_compress(compress_ratio,
hidden_states,
attention_mask,
query_lengths,
prompt_lengths):
"""
compress_ratio: int
hidden_states: (b, s, h)
attention_mask: (b, s)
query_lengths: (b)
prompt_lengths: (b)
"""
# get some specific parameters
passage_lengths = torch.sum(attention_mask, dim=1, dtype=torch.int) - query_lengths - prompt_lengths # the raw passage lengths (b)
retain_passage_lengths = (passage_lengths + compress_ratio - 1) // compress_ratio # the passage lengths need to be retained (b)
final_useful_lengths = query_lengths + prompt_lengths + retain_passage_lengths # the final useful length after compress (b)
max_passage_length = torch.max(passage_lengths) # the max passage lengths (1)
max_final_lengths = torch.max(final_useful_lengths) # the max useful lengths after compress (1)
# make new hidden states and new attention masks
new_hidden_states = torch.zeros((hidden_states.shape[0], max_final_lengths,
hidden_states.shape[-1]), dtype=hidden_states.dtype).to(hidden_states.device) # (b, s', h)
new_attention_mask = torch.ones((hidden_states.shape[0], max_final_lengths), dtype=attention_mask.dtype).to(attention_mask.device) # (b, s')
# get new attention mask
mask_attention_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0) >= final_useful_lengths[:, None]
new_attention_mask[mask_attention_index] = 0
# get new hidden states
# add query into new hidden states
query_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0)
mask_query_index = query_index < query_lengths[:, None]
new_hidden_states[mask_query_index] = hidden_states[:, : max_final_lengths, :][mask_query_index]
# add prompt into new hidden states
# get the index of the prompt in new hidden states
new_prompt_start_length = query_lengths + retain_passage_lengths
new_prompt_end_length = new_prompt_start_length + prompt_lengths
new_prompt_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0)
new_mask_prompt_index_start = new_prompt_index >= new_prompt_start_length[:, None]
new_mask_prompt_index_end = new_prompt_index < new_prompt_end_length[:, None]
new_mask_prompt_index = new_mask_prompt_index_start & new_mask_prompt_index_end
# get the index of the prompt in hidden states
raw_prompt_start_length = query_lengths + passage_lengths
raw_prompt_end_length = raw_prompt_start_length + prompt_lengths
raw_prompt_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
raw_mask_prompt_index_start = raw_prompt_index >= raw_prompt_start_length[:, None]
raw_mask_prompt_index_end = raw_prompt_index < raw_prompt_end_length[:, None]
raw_mask_prompt_index = raw_mask_prompt_index_start & raw_mask_prompt_index_end
# replace the prompt hidden states
new_hidden_states[new_mask_prompt_index] = hidden_states[raw_mask_prompt_index]
# 以上均没问题
# print(new_hidden_states.view(len(new_hidden_states), -1))
# print(new_attention_mask)
# get the index of the passage in new hidden states
new_passage_start_length = query_lengths
new_passage_end_length = new_passage_start_length + retain_passage_lengths
new_passage_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0)
new_mask_passage_index_start = new_passage_index >= new_passage_start_length[:, None]
new_mask_passage_index_end = new_passage_index < new_passage_end_length[:, None]
new_mask_passage_index = new_mask_passage_index_start & new_mask_passage_index_end
# print(query_lengths, prompt_lengths, retain_passage_lengths, final_useful_lengths)
# add passage into new hidden states
# get mask hidden states
psg_start_length = query_lengths
psg_end_length = query_lengths + passage_lengths
psg_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
mask_psg_index_start = psg_index >= psg_start_length[:, None]
mask_psg_index_end = psg_index < psg_end_length[:, None]
mask_psg_index = mask_psg_index_start & mask_psg_index_end
hidden_states = hidden_states * mask_psg_index.unsqueeze(-1)
passage_hidden_states = torch.zeros((hidden_states.shape[0],
(max_passage_length + compress_ratio - 1) // compress_ratio * compress_ratio,
hidden_states.shape[-1]), dtype=hidden_states.dtype).to(hidden_states.device)
passage_end_length = passage_lengths
passage_index = torch.arange(passage_hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) # maybe exceed the max passage length
mask_passage_index = passage_index < passage_end_length[:, None]
raw_passage_end_length = query_lengths + passage_lengths
raw_passage_start_length = query_lengths
raw_passage_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
raw_mask_passage_index_start = raw_passage_index >= raw_passage_start_length[:, None]
raw_mask_passage_index_end = raw_passage_index < raw_passage_end_length[:, None]
raw_mask_passage_index = raw_mask_passage_index_start & raw_mask_passage_index_end
passage_hidden_states[mask_passage_index] = hidden_states[raw_mask_passage_index]
passage_weights = torch.zeros((hidden_states.shape[0],
(max_passage_length + compress_ratio - 1) // compress_ratio * compress_ratio)
, dtype=hidden_states.dtype).to(hidden_states.device)
passage_weights[mask_passage_index] = 1
passage_weights = passage_weights.view(passage_weights.shape[0], -1, compress_ratio)
passage_weights = passage_weights / torch.sum(passage_weights, dim=-1
).view(passage_weights.shape[0], -1, 1)
passage_weights = passage_weights.view(passage_weights.shape[0], -1)
# passage_weights = torch.where(passage_weights == torch.nan, 0, passage_weights)
passage_hidden_states = passage_hidden_states * passage_weights.unsqueeze(-1)
passage_hidden_states = passage_hidden_states.view(passage_hidden_states.shape[0], -1, compress_ratio,
passage_hidden_states.shape[-1])
passage_hidden_states = torch.sum(passage_hidden_states, dim=2)
passage_end_length = retain_passage_lengths
passage_index = torch.arange(passage_hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
mask_passage_index = passage_index < passage_end_length[:, None]
new_hidden_states[new_mask_passage_index] = passage_hidden_states[mask_passage_index]
return new_hidden_states, new_attention_mask
@add_start_docstrings(
"The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
GEMMA2_START_DOCSTRING,
)
class CostWiseGemmaModel(CostWiseGemma2PreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GemmaDecoderLayer`]
Args:
config: GemmaConfig
"""
def __init__(self, config: CostWiseGemmaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Gemma2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
compress_layer: Optional[int] = None,
compress_ratio: Optional[int] = None,
cutoff_layers: Optional[List[int]] = None,
query_lengths: Optional[int] = None,
prompt_lengths: Optional[int] = None,
) -> Union[Tuple, CostWiseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
compress_ratio = None if compress_ratio == 1 else compress_ratio
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if self.config.layer_wise:
output_hidden_states = True
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if compress_layer is not None and compress_ratio is not None:
logger.warning_once(
"`use_cache=True` is incompatible with reranker. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if cache_position is None:
cache_position = torch.arange(0, inputs_embeds.shape[1], device=inputs_embeds.device)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# embed positions
hidden_states = inputs_embeds
# normalized
# Gemma downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
# See https://github.com/huggingface/transformers/pull/29402
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
hidden_states = hidden_states * normalizer
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_attention_masks = ()
all_self_attns = () if output_attentions else None
next_decoder_cache = None
is_padding_left = (attention_mask[:, -1].sum() == attention_mask.shape[0]) and (
torch.sum(attention_mask) != attention_mask.shape[0] * attention_mask.shape[1])
query_lengths = [0] * hidden_states.shape[0] if query_lengths is None else query_lengths
prompt_lengths = [0] * hidden_states.shape[0] if prompt_lengths is None else prompt_lengths
if not isinstance(query_lengths, torch.Tensor):
query_lengths = torch.tensor(query_lengths, device=hidden_states.device)
if not isinstance(prompt_lengths, torch.Tensor):
prompt_lengths = torch.tensor(prompt_lengths, device=hidden_states.device)
if cutoff_layers is None:
max_layer = self.config.num_hidden_layers
cutoff_layers = [max_layer]
if isinstance(cutoff_layers, int):
max_layer = cutoff_layers
cutoff_layers = [cutoff_layers]
else:
max_layer = max(cutoff_layers)
for idx, decoder_layer in enumerate(self.layers):
if self.config.layer_wise:
if idx in cutoff_layers and output_hidden_states:
all_hidden_states += (self.norm(hidden_states),)
all_attention_masks += (attention_mask,)
if idx == max_layer:
break
elif output_hidden_states:
all_hidden_states += (hidden_states,)
if compress_layer is not None and compress_ratio is not None and idx in compress_layer and idx != 0:
if is_padding_left:
raise ValueError('You must use right padding...')
hidden_states, attention_mask = token_compress(compress_ratio, hidden_states, attention_mask,
query_lengths, prompt_lengths)
seq_length = hidden_states.shape[1]
cache_position = torch.arange(0, seq_length, device=hidden_states.device)
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, hidden_states, cache_position, past_key_values, output_attentions
)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if not self.config.layer_wise:
if output_hidden_states:
all_hidden_states += (hidden_states,)
all_attention_masks += (attention_mask,)
else:
if output_hidden_states and self.config.num_hidden_layers == max_layer:
all_hidden_states += (hidden_states,)
all_attention_masks += (attention_mask,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return CostWiseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
attention_masks=all_attention_masks
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
if past_key_values is not None:
target_length = past_key_values.get_max_length()
else:
target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1]
if attention_mask is not None and attention_mask.dim() == 4:
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
if attention_mask.max() != 0:
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
causal_mask = attention_mask
else:
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class CostWiseHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, input_size, output_size):
super().__init__()
self.linear_head = nn.Linear(input_size, output_size, bias=False)
def forward(self, **kwargs):
return self.linear_head(**kwargs)
class CostWiseGemmaForCausalLM(CostWiseGemma2PreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: CostWiseGemmaConfig):
super().__init__(config)
self.model = CostWiseGemmaModel(config)
self.vocab_size = config.vocab_size
if not config.layer_wise:
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
else:
self.lm_head = nn.ModuleList(
[CostWiseHead(config.hidden_size, 1) for _ in range(
config.start_layer, config.num_hidden_layers + 1, config.layer_sep
)]
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
compress_layer: Optional[int] = None,
compress_ratio: Optional[int] = None,
cutoff_layers: Optional[List[int]] = None,
query_lengths: Optional[int] = None,
prompt_lengths: Optional[int] = None,
) -> Union[Tuple, CostWiseCausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, GemmaForCausalLM
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if compress_ratio is not None and compress_ratio == 1:
compress_ratio = None
if self.config.layer_wise:
if cutoff_layers is None:
cutoff_layers = [self.config.num_hidden_layers]
elif isinstance(cutoff_layers, int):
cutoff_layers = [cutoff_layers]
can_use_layers = list(range(self.config.start_layer, self.config.num_hidden_layers + 1, self.config.layer_sep))
remove_layers = [i for i in cutoff_layers if i not in can_use_layers]
if len(remove_layers) > 0:
logger.warning_once(
f"layers {remove_layers} are incompatible with the setting. They will be removed..."
)
cutoff_layers = [i for i in cutoff_layers if i not in remove_layers]
if len(cutoff_layers) == 0:
raise ValueError(f"Your cutoff layers must in [{self.config.start_layer}, {self.config.num_hidden_layers}]")
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
compress_layer=compress_layer,
compress_ratio=compress_ratio,
query_lengths=query_lengths,
prompt_lengths=prompt_lengths,
cutoff_layers=cutoff_layers,
)
if not self.config.layer_wise:
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
if self.config.final_logit_softcapping is not None:
logits = logits / self.config.final_logit_softcapping
logits = torch.tanh(logits)
logits = logits * self.config.final_logit_softcapping
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
else:
hidden_states = outputs.hidden_states
logits = ()
for i in range(len(hidden_states)):
tmp_logits = self.lm_head[i].linear_head(hidden_states[i])
if self.config.final_logit_softcapping is not None:
tmp_logits = tmp_logits / self.config.final_logit_softcapping
tmp_logits = torch.tanh(tmp_logits)
tmp_logits = tmp_logits * self.config.final_logit_softcapping
tmp_logits = tmp_logits.float()
tmp_logits = tmp_logits.reshape(hidden_states[i].shape[0], -1)
logits = logits + (tmp_logits,)
loss = None
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CostWiseCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
attention_masks=outputs[-1] if self.model.config.layer_wise else outputs[-1][-1]
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
use_cache=True,
**kwargs,
):
past_length = 0
if past_key_values is not None:
# Past key values are always initialized with a `Cache` object -> no need for if-else anymore
past_length = cache_position[0] if cache_position is not None else torch.tensor(0, device=input_ids.device)
max_cache_length = (
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
if past_key_values.get_max_length() is not None
else None
)
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_length == 0:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {"input_ids": input_ids.contiguous()}
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
if cache_position is None:
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
elif use_cache:
cache_position = cache_position[-input_length:]
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
|